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Abstract An acronym PARMA is used in different configurations, we talk
about PARMA systems, PARMA sequences, or PARMA models. This paper
is a result of the author search to understand this complex world of PARMAs.

1 Introduction

Periodically correlated sequences (PC) are sequences that are obtained by
listing elements of a multi-variate stationary sequence in a linear order. There
is no surprise therefore that both theories are strictly related. VARMA models
are representations of multi-variate stationary sequences in a form of vector
difference equations (VDE). PARMA models result from nonhomogeneous
(periodic) VDE representations and under mild conditions yield periodically
correlated sequences. PARMA models form a subset of VARMA models. Since
only stationary sequences with rational densities admit VARMA models, it
is natural that the study of PARMA models should involve an analysis of
periodically correlated sequences with rational densities.

Sequences with rational densities play an important role in the theory of
multi-variate stationary sequences. These are the only multi-variate station-
ary sequences for which the theoretical prediction problem has an explicit
solution (under small additional assumptions), that is the only multi-variate
stationary sequences for which it is possible to explicitly compute the co-
efficients of the innovation representation of the sequence from its density.
This solution, however, is not fully satisfactory since it depends on infinitely
many parameters (i.e. innovation coefficients). A VARMA model is an inge-
nious concept of reducing the number of parameters. The idea is to represent
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a sequence as a solution of a vector difference equations that involves only
finitely many terms. In spectral domain this translates to a problem of writ-
ing a transfer function of the sequence (i.e. a square factor of its density) as
a ”quotient” of two polynomial matrices. The main purpose of this paper is
to transfer these and other relevant results known for multi-variate station-
ary sequences to those periodically correlated sequences given by PARMA
models.

A paper is organized as follows. In Section 2 we provide notation and
definitions needed in the sequel. Section 3 contains an extensive review of
the theory of periodically correlated sequences and multi-variate stationary
sequences that sometimes goes beyond the needs of this paper. A focus is on
the relation between PC and T -variate stationary sequences and on sequences
with rational densities. In Section 4 we discuss a relationship between PC
sequences with rational densities and PARMA systems. The next Section 5
contains few remarks about PARMA models. In that section we limit our
attention to full rank sequences; a general case of any rank sequences seems
to be still open even for multi-variate stationary sequences.

Most of the facts about multi-variate stationary sequences come from [11],
while for the theory of VARMA systems from [4] and [5]. Up-to-date review of
PARMA models and related topics, with emphasis on statistics, can be found
in [2]. Sources of information about periodically correlated sequences will be
cited as needed. To our best knowledge, periodically correlated sequences
with rational densities have not been studied before.

2 Preliminaries

Sets and Matrices. In what follows C denotes the set of complex numbers,
D<r = {z ∈ C : |z| < r} is an open disk of radius r, and Dr = {z ∈ C :
|z| = r} is a circle of radius r, r > 0. The interval [0, 2π) will be understood
as a group with addition modulo 2π and with standard Lebesgue measure
structure. The abbreviation a.e. will mean almost everywhere with respect to
the Lebesgue measure on [0, 2π). A function on [0, 2π) will be interpreted as
a function of the unit circle D1 and will be written as f(eit) or f(z), z = eit,
t ∈ [0, 2π). This notation is convenient in analysis of sequences with rational
densities and we use it all over the paper. The letter T will be always a fixed
positive integer and Z will denote the set of integers. The symbols q(m) and
〈m〉 stand for the quotient and the nonnegative remainder in division of m
by T , so that m = q(m)T + 〈m〉. The entries of matrices and vectors in this
paper are indexed from 0 instead from 1. The (i, j) entry of a matrix A will
be denoted by Ai,j . For any matrix A, A∗ is the complex conjugate of A, i.e.
(A∗)i,j = Aj,i. If B is a square n × n matrix then the adjugate BA of B is
an n × n matrix whose (i, j) entry is given by (BA)ij = (−1)i+j det(B[j,i]),
where B[j,i] is obtained from B by deleting j-th row and i-th column. A square
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matrix B is invertible iff det(B) 6= 0 and if it is then B−1 = (det(B))−1BA.
An n×n diagonal matrix A will be denoted diag [A0,0, A1,1, . . . An−1,n−1]. A
minor of degree k, k ≤ min(m,n), of an m× n matrix A is the determinant
of a square k× k sub-matrix of A obtained by deleting m− k rows and n− k
columns from A. A rank of a matrix A is the maximum number of linearly
independent columns or rows of A; rank(A) = r iff there is a minor of order
r which is nonzero and all minors of bigger order are zero. A principal minor
of order k of a square n × n matrix A is a minor obtained by deleting last
n − k columns and the last n − k rows. A square matrix A is non-negative
(A ≥ 0) if for every a ∈ CT , aAa∗ ≥ 0; A ≥ 0 iff all principal minors are
non-negative. A 1× n matrix will be called a vector.

A rational m×n matrix R(z) is a matrix whose entries R(z)j,k are rational
functions of a complex variable z ∈ C; that is, each entry is a ratio of two
polynomials. We will be always assuming that the entries of a rational matrix
are written in the simplest form. Note that since minors of a rational matrix
are rational functions, if a minor is non-zero for one z than it is nonzero for
all z ∈ C except finitely many points. Therefore the rank of a rational matrix
is constant except for finitely many z’s. The poles of a rational matrix are
numbers z such that R(z) does not exist and the zeros of R(z) are complex
numbers z at which the matrix R(z) drops its rank (e.g. [7], or [5], Section
3.2.). A polynomial m×n matrix is a matrix whose entries are polynomials of
a complex variable z. A matrix function R(eit) on [0, 2π) is called rational (or
polynomial) if there is a rational (polynomial) matrix R(z) on C such that
R(eit) equals R(z) a.e. on D1. If P (z) is a polynomial matrix and p(z) =
detP (z) is not identically zero, then p(z) 6= 0 for all z ∈ C except finitely

many, and P (z)−1 = p(z)−1P (z)
A

is a rational matrix. The most important
fact from the theory of rational matrices will be for us the following theorem
proved by Rozanov.

Theorem 2.1 ([11], Thm. 10.1) Each a.e. nonegative rational square ma-
trix function F (eit) on [0, 2π) of rank r (i.e. rank of F (z) is r) can be repre-
sented in the form F (eit) = G(eit)G(eit)∗ a.e. where G(z) is rational, analytic
on D<1, and the rank of G(z) is r for all z ∈ D<1.

In terms of zeros and poles the last statement means that all zeros and poles
of G(z) are outside of the open unit disk D<1.

A square polynomial matrix is U(z) is called unimodular if det(U(z)) is
constant (i.e. does not depend on z). An m ×m matrix L(z) is called a left
(common) divisor of m× n polynomial matrices A(z) and B(z) if there are
m × n polynomial matrices A1(z) and B1(z) such that A(z) = L(z)A1(z)
and B(z) = L(z)B1(z). Note that if detA(z) is not identically zero, then also
detL(z) is not. A left divisor L(z) is called a greatest left divisor of A(z) and
B(z) if for any other left divisor L1(z) of A(z) and B(z) there is a polynomial
m ×m matrix T (z) such that L(z) = L1(z)T (z). Polynomial matrices A(z)
and B(z) are called left coprime if the only left divisors of A(z) and B(z) are
the unimodular once. For those and other interesting facts from the theory
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of polynomial and rational matrices we refer the reader to [7] or [5], Section
3.2.

Hilbert Spaces. A Hilbert space will be denoted H (or K), and (x, y)
will denote the inner product of x, y ∈ H (or K). All Hilbert spaces are
assumed to be complex and separable. If H is a Hilbert space and M is
a closed subspace of H, then (x|M) denotes the orthogonal projection of
x ∈ H onto M . If S is any subset of H then sp{S} denote the smallest
closed linear subspace of H containing S. A linear mapping (operator) from
H onto K is called unitary if (Ux,Uy)K = (x, y)H for every x, y ∈ H. A
sequence (ξn), n ∈ Z, of elements of H is orthonormal if (ξn, ξm) = 1 if
m = n, and zero otherwise. Important for us will be the space CT of all
row vectors of the length T with entries in C and standard Euclidean inner
product, the Hilbert space L2 of all measurable complex functions (in fact
equivalence classes of functions) on [0, 2π) which are square integrable w.r.t
the Lebesgue measure dt on [0, 2π), and the Hilbert space L2(CT ) of all CT -
valued functions f on [0, 2π) such that their entries are in L2. The inner

product in L2(CT ) is (f, g) =
∫ 2π

0
f(eit)g(eit)∗dt. The symbol L2

+ will denote
the subspace of L2 consisting functions f whose Fourier coefficients with
negative indices are zero, i.e. such that f(eit) =

∑∞
k=0 fke

itk; L2
+(CT ) denotes

the subspace of functions in L2
+(CT ) such that their entries are in L2

+. The
standard orthonormal basis for CT is ek, k = 0 . . . , T − 1, where ek is the
row vector that has 1 at the k-th place and zero otherwise. The standard
orthonormal basis for L2(CT ) is the family of functions ζn(eit), n ∈ Z, defined
by ζnT+r(e

it) = (1/
√

2π)e−inter, n ∈ Z, r = 0, . . . , T−1. If G(eit) is a matrix
function then we say that G is square integrable if all entries of G are in L2.

Stochastic Sequences. We adopt a Hilbert space approach. A (univari-
ate) stochastic sequence (x(n)) in a Hilbert space H is a sequence of elements
of H indexed by the set of all integers Z. The correlation function of (x(n)) is
the function on Z2 defined by Rx(m,n) = (x(m), x(n)). If (x(n)) is a stochas-
tic sequence then we denote Mx = sp{x(m) : m ∈ Z} . Two stochastic se-
quences (x(n)) in H and (y(n)) in possibly different Hilbert space K are said
to be equivalent if Rx(m,n) = Ry(m,n) for every m,n ∈ Z or, equivalently,
if there is a unitary mapping Φ from Mx onto My such that Φ(x(n)) = y(n),
n ∈ Z. The concept of an equivalence of stochastic sequences makes the
Hilbert space H appearing in the definition of a stochastic sequence irrele-
vant and we will stop writing it unless will be necessary. If T is a positive
integer, then a T -variate stochastic sequence in H is a family of T stochastic
sequences (xk(n)), k = 0, . . . , T − 1, in H. It is convenient to write it as a
sequence of column vectors x(n) = [xk(n)] with entries in H and x0(n) be-
ing at the top. The correlation function of a T -variate stochastic sequence
x(n) = [xk(n)], n ∈ Z, is T × T matrix valued function Rx on Z2 defined
as Rx(m,n)j,k = (xj(n), xk(m)). A T -variate sequence ξn = [ξjn], n ∈ Z, is
called a T -variate orthonormal sequence if Rx(n, n) = I, the identity matrix,
and Rx(m,n) = 0 for all m 6= n.
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If (x(n)) is a T -variate stochastic sequence then we define Mx(n) =
sp{xk(m) : k = 0, . . . , T − 1,m ≤ n}, Mx = Mx(+∞), and Nx(n) =
Mx(n)	Mx(n− 1). A sequence (x(n) is called regular if

⋂
nMx(n) = {0}.

One of the main goals of prediction theory is to find an orthogonal projec-
tion x̂(n) = (x(n)|Mx(n − 1) := [(xk(n)|Mx(n − 1)]. In probabilistic terms
x̂(n) represents the best linear estimate (predictor) of a random vector x(n)
from the past. All the above notation and definitions are valid for univariate
sequences, that is when T = 1.

3 PCs and T -variate Stationary Sequences.

A T -variate stochastic sequence (x(n)) is called stationary if for every n ∈ Z,
Rx(n + r, r) is constant in r ∈ Z. If it is so, then the function Kx(n) :=
Rx(n, 0) is called the (matrix) correlation function of a stationary sequence
(x(n)). If (x(n)) is T -variate stationary then the mapping Uxk(n) = xk(n+
1), n ∈ Z, k = 0, . . . , T − 1, extends linearly to a unitary operator on Mx
which is called the shift of (x(n)). A T -variate stochastic sequence (x(n))
is completely described by its shift and the vector x(0); namely x(n) =

Unx(0) := [Unxk(0)]. If we write Un =
∫ 2π

0
e−iunE(du), n ∈ Z, (e.g. [3]) then

we obtain that Kx(n) =
∫ 2π

0
e−iunF (du) where F is a T × T nonnegative

matrix measure on [0, 2π) defined by F j,k(∆) = (E(∆)xk(0), xj(0)). The
measure F is called the spectrum of a T -variate stationary sequence (x(n)).

An important example is a sequence (H(n)) of T × T matrix valued func-
tions with rows in L2(CT ) defined as H(n)(eit) = e−intH(eit), n ∈ Z, t ∈
[0, 2π). The sequence (H(n)) can be viewed as a T -variate stationary sequence
inH = L2(CT ). The k-th coordinate Hk(n) of H(n) is the k-th row Hk·(eit) of
the matrix H(eit) multiplied by e−int, the shift of (H(n)) is multiplication by

e−it, the correlation function of (H(n)) isKH(n) =
∫ 2π

0
e−intH(eit)H(eit)∗dt,

so the spectrum F of (H(n)) is F (dt) = H(eit)H(eit)∗dt.
A (univariate) sequence (x(n)) is called periodically correlated with period

T (we will abbreviate it T -PC), if for every n ∈ Z the sequence Rx(n+r, r) =
(x(n + r), x(r)) is T -periodic in r ∈ Z. The discrete Fourier transform of
Rx(n+ r, r) with respect r will be denoted aj(n); more precisely

aj(n) :=

T−1∑
r=0

e−2πijr/TRx(n+ r, r), j = 0, . . . , T − 1. (1)

If (x(n)) is T -PC then the mapping Wx(n) = x(n + T ), n ∈ Z, extends
linearly to a unitary operator in Mx which is called the T -shift of a T -PC
sequence (x(n)). To describe a T -PC sequence we need x(0) and two unitary
operators; namely, a sequence (x(n)) is T -PC iff (x(n)) is of the form
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x(n) = Un

(1/T )

T−1∑
j=0

e−2πijn/TV jx(0)

 , n ∈ Z, (2)

where U and V are unitary operators in some Hilbert space K ⊇Mx, V T = I,
and U , V satisfy a canonical commutation relation V U = e−2πi/TUV . If we
write operators U and V in terms of their spectral resolutions as follows Un =∫ 2π

0
e−iunE(du), n ∈ Z, and V j =

∑T−1
k=0 e

2πikj/TPk, j = 0, . . . , T − 1, then
the formula (2) takes the form x(n) = UnP〈n〉x(0) and we obtain that Rx(n+

r, r) = (Unx(0), P〈r〉x(0)), n, r ∈ Z. Consequently aj(n) =
∫ 2π

0
e−iunγj(du),

where γj(∆) = (E(∆)x(0), V jx(0)) , j = 0, . . . , T−1 (see [9] for details). The
vector measure γ = (γ0, . . . , γT−1) is called the spectrum of a T -PC sequence
(x(n)). The existence of measures γj can be proved in a different way (e.g.
[6], Section 6.2).

If the spectrum F or γ is absolutely continuous with respect to Lebesgue
measure on [0, 2π), then we call the respective sequence absolutely continuous,
and abbreviate it a.c.. The Radon-Nikodym derivative of an a.c. spectrum
with respect to the Lebesgue measure on [0, 2π) will be called a density of
the sequence. As indicated in Section 2 we will look at a density as a function
on the unit circle rather than on [0, 2π). Here are the precise definitions:

1. A density of a T -variate stationary a.c. sequence (x(n)) is a T ×T matrix
function F on the unit circle D1 with integrable entries such that

Kx(n) =

∫ 2π

0

e−itnF
(
eit
)
dt, n ∈ Z. (3)

2. A density of an a.c. T -PC sequence (x(n)) is a vector function g =
(g0, . . . , gT−1) on the unit circle D1 with integrable entries such that

aj(n) =

∫ 2π

0

e−itngj
(
eit
)
dt, j = 0, . . . , T − 1, n ∈ Z. (4)

A square factor of a density F of a T -variate stationary sequence is a T × T
matrix function H on the unit circle D1 with entries in L2 such that F

(
eit
)

=

H
(
eit
)
H
(
eit
)∗

a.e. A square factor of a density g of a T -PC sequence
is defined as a vector function h on the unit circle D1 with values in CT
and with entries in L2 such that for every j = 0, . . . , T − 1, gj(eit) =
h(eit)h(ei(t+2πj/T ))∗ a.e. If g is a density of a T -PC sequence then g admits at
least one square factor (see [8] or Lemma 3.1 below). Note that our definition
of a square factor is slightly different from the one given in [8], where it was
defined as gj(eit) = (1/T )h(eit)h(ei(t+2πj/T ))∗.

Remark 1 In the case of stationary sequences H is often called a transfer
function (the nomenclature seems to come from signal processing). Suppose
that (x(n)) is T -variate stationary sequence with a density F and H is a



Rational PC 7

square factor of F . We can think about a filter whose input is a T -variate
”white noise” on T , that is, in our approach, a Hilbert space valued vector
measure z(∆) = [zk(∆)] on [0, 2π) such that (zk(∆1), zj(∆2)) = `(∆1 ∩∆2)
if k = j (where ` is the Lebesgue measure) and zero otherwise. The output is

a T -variate sequence y(n) =
∫ 2π

0
e−intH

(
eit
)
z(dt) which is stationary and

its spectral density is equal to F , that is (y(n)) unitary equivalent to the
sequence (x(n)). A square factor h of a density g of a T -PC sequence (x(n))
has a similar interpretation. Now the input of a filter is a univariate ”white
noise” z(∆). The output of the filter is

y(n) =

∫ 2π

0

e−int

[
1

T

T−1∑
k=0

e−i2πnk/Th
(
ei(t+2πk/T )

)]
z(dt). (5)

Corollary 3.1 shows that (y(n)) is a T -PC sequence equivalent to (x(n)). �

There is a natural one-to-one correspondence between T -variate stationary
sequences and T -PC sequences. Namely, if x(n) = [xk(n)], n ∈ Z, is a T -
variate stationary sequence then by arranging xk(n)’s in one sequence we
obtain a T -PC sequence x(n) = x〈n〉(q(n)), n ∈ Z, and conversely, if x(n) is
T -PC and we define xk(n) = x(nT +k), k = 0, . . . , T −1, n ∈ Z, then x(n) =
[xk(n)], n ∈ Z, is a T -variate stationary. Given a T -PC sequence (x(n)), the
T -variate stationary sequence (x(n)) = [x(nT + k)] defined above will be
called the block sequence corresponding to (x(n)); given a T -variate stationary
sequence (x(n)), the sequence x(n) = x〈n〉(q(n)), n ∈ Z, will be called the T -
PC sequence corresponding to (x(n)). Since Mx(n) = Mx(nT +T − 1), both
sequences are simultaneously regular or not. The following lemma describes
the relation between the spectra and square factors of (x(n)) and (x(n)).

Lemma 3.1 Let (x(n)) be T -PC and (x(n)) be the corresponding T -variate
stationary block sequence.

1. Suppose that (x(n)) is a.c. and H
(
eit
)

is a square factor of its density

F
(
eit
)
. Let Hk· denote the k-th row of H, and let

h(eit) :=

T−1∑
k=0

eiktHk·(eiT t), t ∈ [0, 2π).

Then (x(n)) is a.c. and h is a square factor of a density g = (g0, . . . , gT−1)
of (x(n)), that is gj(eit) = h(eit)h(ei(t+2πj/T ))∗ a.e., j = 0 . . . , T − 1.

2. Suppose that (x(n)) is a.c. and h(eit) is a square factor of a density g of
(x(n)). Define

fk(eit) = (1/T )

T−1∑
j=0

e−ik(t+2πj/T )h(ei(t+2πj/T )), k = 0, . . . , T − 1.
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Then fk is 2π/T -periodic, and hence there is a function hk(eit) such that
fk(eit) = hk(eiT t). Let H(eit) be the T × T matrix function which k-th
row Hk· is equal hk. Then (x(n)) is a.c. and H is a square factor of its
density F , that is F (eit) = H(eit)H(eit)∗ a.e.

The lemma is a consequence of Lemmas 3.2 and 3.3 from [8] (applied for µ to
be the Lebsgue measure). For a convenience of the reader, and because the
proof for a.c. sequences is much easier than in a general case, we will give a
full proof in Appendix. The proof is not a replacement nor a simplification
of the proof given in [8] since it works only for a.c. sequences.

We will express the above relations in a matrix form. To simplify the
notation we denote eit = z and ei2π/T = d. Note that dk = d〈k〉 and that∑T−1
k=0 d

jk = 0 unless j = 0 modulo T when it is equal to T . Let H = [Hj,k]
and h = (h0, . . . , hT−1) be the square factors defined in Lemma 3.1. Given h

we define the companion matrix functions Hd(z) by Hj,k
d (z) = hk(zdj). Note

that h is just a first row of Hd. Further let Dz = diag [1, z, z2 . . . , zT−1],
and let D be the matrix with entries Dj,k = djk. Easy computation shows
D−1 = (1/T )[d−jk]. Under these notations the part 1 of Lemma 3.1 says that
h(z) = (1, z, . . . , zT−1)H(zT ), while part 2 says that

Hk·(zT ) = (1/T )z−k
T−1∑
j=0

d−jkh(zdj) = (D−1z D−1Hd(z))
k·, (6)

which also shows that Hd(z) = DDzH(zT ). Summing up we have that

h(z) = (1, z, . . . , zT−1)H(zT ) (7)

H(zT ) = D−1z D−1Hd(z), where Hj,k
d (z) = hk(zdj) (8)

The operations (7) and (8) are inverse to each other, that is if we start with
H, construct h as in (7), and then use (8), we will end up with the same H;
indeed

H(z)
(7)−→ h(z) = (1, z, . . . , zT−1)H(zT )

(8)−→ D−1z D−1Hd(z) = H(zT ).

Therefore the correspondence h ↔ H described in Lemma 3.1 is one-to-one
and onto.

The substitution z = eit is not just symbolic convenience. In many cases
it defines a concrete function of complex variable; for example if R(eit) is a
rational function of t then R(z) is a rational function of complex variable
that coincides with R(eit) on the unit circle D1.

From Lemma 3.1 we obtain the following functional model for a.c. T -
PC sequences, which is a special a.c. case of [8], Theorem 3.2 (and also [9],
Theorem 3.3).

Corollary 3.1 Let (x(n)) be an a.c. T -PC sequence with density g and let
h be a square factor of g. Let (y(n)) be a sequence in L2(CT ) defined as
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y(n)(eit) = (1/T )

T−1∑
j=0

e−in(t+2πj/T )h(ei(t+2πj/T )), t ∈ [0, 2π).

Then (y(n)) and (x(n)) are unitarily equivalent.

Proof. From (6) it follows that, in terms of z = eit, d = ei2π/T and H(z),

y(n)(z) = (1/T )
∑T−1
j=0 z

−nd−jnh(zdj) = z−q(n)TH〈n〉·(zT ). Hence y(n)(ei·),

n ∈ Z, is a T -PC sequence in L2(CT ) that corresponds to a T -variate station-
ary sequence (y(n)) in L2(CT ) defined by yk(n)(eit) = e−iq(n)TtH〈n〉·(eitT ).

Since for any integrable 2π periodic function φ,
∫ 2π

0
φ(eiT t)dt =

∫ 2π

0
φ(eit)dt,

(y(n)) has the same covariance as the T -variate block sequence corresponding
to (x(n)), and hence (y(n)) and (x(n)) are unitarily equivalent. ut

An immediate consequence of Lemma 3.1 is that the corresponding se-
quences (x(n)) and (x(n)) are simultaneously a.c. or not. Since their densities
are respectively F (z) = H(z)H(z)∗ and g(z) = h(z)Hd(z)

∗ = e0Hd(z)Hd(z)
∗,

z = eit, where e0 = (1, 0, . . . , 0), the relations (7) and (8) yield the following
relations between the density g of a T -PC sequence (x(n)) and the density
F of the corresponding T -variate stationary block sequence:

F (zT ) = (1/T )D−1z D−1G(z)DDz, (9)

where G(z) = Hd(z)Hd(z)
∗, that is G(z)j,k = h(zdj)h(zdk)∗ = g〈k−j〉(zdj);

and
g(z) = e0DDzF (zT )D∗zD

∗. (10)

Remember that in the above formulas z = eit and d = ei2π/T . Therefore we
have obtained the following corollary.

Corollary 3.2 Let (x(n)) be T -PC and (x(n)) be the corresponding T -
variate stationary block sequence. Suppose that both are a.c., and let g and
F be their densities, respectively. Then

F j,k(zT ) = (1/T 2)zk−j
T−1∑
p=0

T−1∑
q=0

dkq−jpg〈q−p〉(zdp),

gk(z) =

T−1∑
p=0

T−1∑
q=0

zp−qd−qkF p,q(zT ),

where z = eit and d = ei2π/T .

For not a.c. sequences, the relation between spectral measures of (x(n)) and
(x(n)) can be found in [8].

Definition 3.1 A T -PC sequence (x(n)) is said to have a rational density if
(x(n)) is a.c. and there is a rational vector function g(z) of complex variable
such that g(eit) is a density of (x(n)). A T -variate stationary sequence (x(n))
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is said to have a rational density if (x(n)) is a.c. and there is a rational
T ×T matrix function F (z) of complex variable such that F (eit) is a density
of (x(n)).

The formulas (9) and (10) show, in particular, that F is rational iff g is
rational. We summarize our discussion in the following theorem.

Theorem 3.1 Let (x(n)) be an a.c. T -PC sequence and (x(n)) be the cor-
responding T -variate stationary block sequence. Then (x(n)) has a rational
density iff (x(n)) has a rational density. Moreover, if F (z) is a rational den-
sity of (x(n)) and H(z) is a rational square factor of F (z), then h(z) defined
by (7) is a rational square factor of a density g(z) of (x(n)); and vice verse,
if g(z) is a rational density of (x(n)) and h(z) is a rational square factor of
g(z), then H(z) defined by (8) is a rational square factor of a density F (z)
of (x(n)). Everywhere above z = eit, t ∈ [0, 2π).

Sequences with rational density may have square factors which are not ratio-
nal.

A T -PC sequence (x(n)) is called a moving average (MA) if there exist an
orthonormal system (ξn) in some Hilbert space H ⊇Mx and a set of scalars
(ck(n)), n, k ∈ Z, such that each (ck(n)), k ∈ Z, is T -periodic in n,

x(n) =

∞∑
k=−∞

ck(n)ξn−k, n ∈ Z. (11)

and UTx(n) = x(n + T ), n ∈ Z, where U is the shift of (ξn) defined by
Uξn = ξn+1. Note that we allow some ξk’s to be outside Mx; and we allow
some c0(n)’s to be zero. If two sequences (x(n)) and (y(n)) are unitarily
equivalent and one has an MA representation, then the other also does. A
sequence may have many different MA representations. We recognize an MA
representation of (x(n)) (if it exists) by listing its coefficients (ck(n)). A T -
PC sequence has an MA representation iff it is a.c.. An MA representation
(ck(n)) of a T -PC sequence (x(n)) in called an innovation representation of
(x(n)) if for every n ∈ Z

Mx(n) = sp{c0(m)ξm : m ≤ n} := Mcξ(n). (12)

For (12) to be true for every n it is enough that it is true for n = 0, . . . , T −1.
An MA representation (ck(n)) of (x(n)) is an innovation representation iff
ck(n) = 0 for all k < 0 and n ∈ Z, and c0(n)ξn is a one-step prediction error
at n, that is x(n) − (x(n)|Mx(n − 1)) = c0(n)ξn, n ∈ Z. A T -PC sequence
(x(n)) has an innovation representation iff it is regular. If it does then the
number of nonzero elements in the set {c0(m) : m = 0, . . . , T − 1}, is called
the rank of (x(n)).

A moving average (MA) representation of a T -variate stationary stochastic
sequence (x(n)) is a representation of (x(n)) in the form
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x(n) =

∞∑
k=−∞

Ckξn−k, n ∈ Z, (13)

where Ck’s are T × T matrices, and ξn = [ξjn] is a T -variate orthonormal
sequence in some space H ⊇ Mx such that Wxk(n) = xk(n + 1), n ∈ Z,
k = 0, . . . , T − 1, where W is the shift of (ξn) defined as Wξkn = ξkn+1.
An MA representation of (x(n)) (if exist) will be recognized by listing its
matrix coefficients (Ck). A T -variate stationary sequence (x(n)) has an MA
representation iff (x(n)) is a.c.. An MA representation (Ck) of a T -variate
stationary sequence (x(n)) is called an innovation representation of (x(n))
iff for every n ∈ Z,

Mx(n) = sp{aC0ξm : m ≤ n, a ∈ CT }, (14)

that is iff Ck = 0 for all k < 0 and for each n, x(n) − (x(n)|Mx(n − 1)) =
C0(n)ξn, n ∈ Z. Here (x(n)|Mx(n − 1)) = [(xk(n)|Mx(n − 1))]. For (14)
to be true it is enough that it is true for n = 0. A T -variate stationary
sequence has an innovation representation iff it is regular. If it does then
then dimension of the space Nx(0) = sp{aC0ξ0 : a ∈ CT } (which is equal
to the rank of matrix C0) is called the rank of the sequence. Note that since
Nx(0) = Nx(0)⊕ . . . Nx(T − 1), the rank of a regular T -PC sequence (x(n))
is equal to the rank of the corresponding T -variate stationary block sequence
(x(n)) and is equal to the (matrix) rank the matrix

Σ := (x(n)− (x(n)|Mx(n− 1))(x(n)− (x(n)|Mx(n− 1))∗.

If (Ck) is an innovation representation of (x(n)) then Σ = C0C
∗
0 .

There is a one-to-one correspondence between MA representations (ck(n))
of a T -PC sequence (x(n)) and MA representations (Ck) of its corresponding
T -variate stationary block sequence (x(n)) given by

Ci,jk = ckT+i−j(i) or ck(n) = C
〈n〉,〈n−k〉
−q(n−k) . (15)

Recall that q(m) and 〈m〉 stand for the quotient and the remainder in division
of m by T , respectively. To see (15) note that after substituting xj(n) =
x(nT + j) and ξkn−p = ξ(n−p)T+k into (13) we obtain that

∞∑
p=−∞

T−1∑
k=0

Cj,kp ξ(n−p)T+k = x(nT + j) =

∞∑
r=−∞

cr(j)ξnT+j−r,

because cr(nT + j) = cr(j). Multiplying both sides by ξ(n−p)T+k we obtain
that

Cj,kp =

∞∑
r=−∞

cr(j)(ξnT+j−r, ξ(n−p)T+k) = cpT−k+j(j)



12 Andrzej Makagon

On the other hand multiplying both sides by ξnT+j−r and noting that (n−
p)T + k = nT + j − r iff −p = q(j − r) and k = 〈j − r〉, we obtain that

cr(j) = C
j,〈j−r〉
−q(j−r).

We will refer to the two MA representations described in (15) as corre-
sponding to each other. The relation (15) is visualized in a matrix form below:[
. . . cT (0) cT−1(0) . . . c1(0) c0(0) c−1(0) . . . c−T+1(0) . . .
. . . cT+1(1) cT (1) . . . c2(1) c1(1) c0(1) . . . c−T+2(1) . . .
. . . . . . . . . C1 . . . . . . . . . C0 . . . . . .
. . . c2T−1(T − 1) c2T−2(T − 1) . . . cT (T − 1) cT−1(T − 1) cT−2(T − 1) . . . c0(T − 1) . . .

]

If (ck(n)) in (15) is an innovation representation of (x(n)) then (Ck) is an
innovation representation of (x(n)). The converse is not true even if C0 is
lower triangular, a counterexample is given in [10]. However, if additionally
to being lower triangular C0 is invertible (i.e. (x(n)) is of full rank), then
(ck(n)) is an innovation representation of (x(n)).

Lemma 3.2 Let (x(n)) be a regular T -PC sequence and (x(n)) be the cor-
responding T -variate stationary block sequence. Let (Ck) be an innovation
representation of (x(n)) and (ck(n)) be the corresponding MA representation
of (x(n)) defined in (15). If C0 is lower triangular and invertible, then (ck(n))
is an innovation representation of (x(n)).

Proof. Recall that xk(0) = x(k), ξk0 = ξk, k = 0, . . . , T −1, Mx(0) = Mx(T −
1), and Mx(−1) = Mx(−1). Also note that since C0 is invertible and C0 is
lower triangular, then all Ck.k0 are different than zero. By assumption C0ξ0 is
equal to the orthogonal projection of x(0) onto Nx(0) = Mx(0)	Mx(−1).

Since C0 is lower triangular, we have that x(k)− (x(k)|Mx(−1)) = Ck,00 ξ0 +

. . . Ck,k0 ξk, k = 0, . . . , T − 1. Suppose first that k = 0. Then from Mx(−1) =
Mx(−1) it follows that x(0) − (x(0)|Mx(−1)) = x(0) − (x(0)|Mx(−1)) =
C0,0

0 ξ0. Since C0,0
0 6= 1, we conclude that Nx(0) = Mx(0)−Mx(−1) = sp{ξ0}.

Assume that we have already shown that x(j) = (x(j)|Mx(j − 1)) = Cj,j0 ξj
for j = 0, . . . , k − 1, 0 < k < T − 1. Then x(k) − x(k)|Mx(−1) = Ck,00 ξ0 +

· · ·+ Ck−1,k−10 ξk−1 + Ck,k0 ξk, and hence

x(k)−Ck,k0 ξk = (x(k)|Mx(−1))+Ck,00 ξ0+. . . Ck−1,k−10 ξk−1 = (x(k)|Mx(k−1)),

i.e. x(k) − (x(k)|Mx(k − 1)) = Ck,k0 ξk. Note that the proof will not work if
C0,0

0 = 0 but both C1,0
0 and C1,1

0 are different than zero. ut

There is an obvious one-to-one correspondence between MA representa-
tions (Cn) of a T -variate stationary sequence (x(n)) and square factors H of
a density F of (x(n)) given by

x(n) =

∞∑
k=−∞

Ckξn−k ←→ H
(
eit
)

= (1/
√

2π)

∞∑
k=−∞

Cke
ikt. (16)
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This relation is easily seen if we choose ξjn = (1/
√

2π)e−intej . Square factors
of F that correspond to innovation representations of (x(n)) are called max-
imal factors (Rozanov [11]). The corresponding notion for PC sequences was
introduced in [10] under the name an i-factor. Maximal factors can be char-
acterized in terms of subspaces of L2

+ spanned by their coordinates (see for
example [11] for T -variate stationary case, and [10] for the PC case). Find-
ing a maximal factor is equivalent to finding coefficients of an innovation
representation of a sequence. The latter constitutes a solution to so called
prediction problem. So far the prediction problem has been solved only for
full rank stationary T -variate sequences having rational densities ([11, 4, 5]).
Theorem 3.1 and Lemma 3.2 allow us to obtain the solution for full rank PC
sequences with rational densities. A procedure is following: given a full rank
T -PC sequence (x(n)) with rational density g compute the rational density
F of the corresponding T -variate block sequence (x(n)) using formula (9),
find a maximal rational square factor G of F using a construction given in
[5] or [11], multiply G by a proper unitary matrix Q so that the ”zero” term
of Fourier series of H(eit) = G(eit)Q is a lower triangular matrix, and then
use Lemma 3.2 to recover innovation coefficients of (x(n)).

4 PARMA Systems

A VARMA system of dimension T ≥ 1 is a system of vector difference equa-
tions (VDE)

l∑
j=0

Ajx(n− j) =

r∑
j=0

Bjξn−j , n ∈ Z, (17)

where Aj ’s, and Bj ’s are complex T ×T matrices, A0 is invertible, Al, B0, Br
are nonzero, and ξn, n ∈ Z, is a given T -variate orthonormal sequence in
some Hilbert space H. A proper stationary solution to a VARMA system
(17) is a T -variate stationary sequence (x(n)) which satisfies the system and
such that xj(n) ∈ Mξ and Wxj(n) = xj(n + 1), n ∈ Z, j = 0, . . . , T − 1,

where W denotes the shift of (ξn). In many publications and books the last
requirement is replaced by some additional assumptions about the coefficients
of the system or by a requirement that the solution has an MA representation
(see for example in [5]). Without any additional assumptions the system (17)
may have multiple or not regular stationary solutions ([5], p. 13). A PARMA
system is an infinite system of difference equations

l∑
j=0

aj(n)x(n− j) =

r∑
j=0

bj(n)ξn−j , n ∈ Z, (18)
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where l, r ≥ 0, aj(n) and bj(n) are T -periodic (in n) sequences of complex
numbers, a0(n) = 1 for every n ∈ Z, and none of the sequences (b0(n)),
(al(n)), and (br(n)) is identically zero. Let U be the shift of (ξn), that is
Uξn = ξn+1, n ∈ Z. We will be interested only in T -PC solutions (x(n)) to
the system whose T-shift coincides with UT , that is such that x(n) ∈ Mξ

and UTx(n) = x(n + T ), n ∈ Z. We label them proper PC solutions. The
assumption UTx(n) = x(n + T ) allows us to avoid having multiple or not
regular PC solutions. If we arrange the coefficients aj(n) into an T ×(L+1)T
matrix [AL . . . A1 A0] where L is such that the matrix contains all nonzero
aj(n)’s as shown below[

. . . aT (0) . . . a2(0) a1(0) a0(0) 0 . . . 0

. . . aT+1(1) . . . a3(1) a2(1) a1(1) a0(1) . . . 0

. . . . . . A(1) . . . . . . . . . A(0) . . . . . .
. . . . . . a2T−1(T − 1) . . . aT+1(T − 1) aT (T − 1) aT−1(T − 1) aT−1(T − 1) . . . a0(T − 1)

]

and do the same for the bj(n)’s creating T × (R + 1)T matrix [BR . . . B0],
then, using matrices Aj and Bj , the system (18) can be written as a VARMA
system

L∑
j=0

Ajx(n− j) =

R∑
j=0

Bjξn−j , n ∈ Z, (19)

where A0 and B0 are lower triangular, and (x(n)) and (ξn) are T -variate
block sequences corresponding to (x(n)) and (ξn) respectively, that is x(n) =
[xk(n)] with xk(n) = x(nT + k) and ξn = [ξkn] with ξkn = ξnT+k. The sys-
tem (17), and hence the system (18), is completely described by a pair of
polynomial matrices (A(z), B(z)) defined as

A(z) =

L∑
k=0

A(k)zk and B(z) =

R∑
k=0

B(k)zk. (20)

In the sequel we will identify both (17) and (18) by giving the corresponding
pair (A(z), B(z)). The only difference between PARMA and general VARMA
systems is that in PARMA systems A0 and B0 are lower triangular, and
Ai,i0 = 1 for each i = 0, . . . , T − 1, so PARMA systems form a subset of the
family of VARMA systems. Note that since a(z) = det(A(z)) is a polynomial
and by assumption a(0) = det(A0) 6= 0, a(z) 6= 0 for all z ∈ C except finitely
many points, and consequently A(z)−1 exists for all z ∈ C except finitely
many points.

Theorem 4.1 A PARMA system (A(z), B(z)) has a proper PC solution iff
the rational matrix function A(z)−1B(z) has no poles of modulus 1. If a
proper PC solution (x(n)) exists, then it is unique, absolutely continuous,
and its density g = (g0, . . . , gT−1) is given by

gj(eit) = h(eit)h(ei(t+2πj/T ))∗, a.e. (21)
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where h(z) = (1, z, . . . , zT−1)H(zT ) and H(z) = (1/
√

2π)A(z)−1B(z), z =
eit.

The theorem remains true when in the above formulation we replace PARMA
by VARMA, PC by T -variate stationary, (x(n)) by (x(n)), g by F , and the
formula (21) by F (eit) = H(eit)H(eit)∗, where H(z) = (1/

√
2π)A(z)−1B(z).

Proof. From the preceding discussion it follows that a PARMA system (18)
has a proper T -PC solution (x(n)) iff the associated VARMA system (19)
has a proper T -variate stationary solutions (x(n)), and if it does then (x(n))
is the T -variate stationary block sequence corresponding to (x(n)). Because
(x(n)) is to be proper, it is enough to find x(0) since then x(n) = Wnx(0).
Therefore it is enough to solve (19) just for n = 0, that is solve the equation∑L
j=0Ajx(−j) =

∑R
j=0Bjξ−j . Substituting x(−j) = W−jx(0) and ξj =

W−jξ0, we can write the above equation as

L∑
j=0

AjW
−jx(0) =

R∑
j=0

BjW
−jξ0, (22)

or symbolically, using polynomialsA(z) andB(z) defined in (20), asA(W−1)x(0) =
B(W−1)ξ(0). To solve (22) let us consider a T -variate orthonormal system
ζn = [ζkn] in L2(CT ) defined as ζkn = (1/

√
2π)e−intek, where (ek) is the stan-

dard basis in CT , and define the unitary operator Φ : Mξ → L2(CT ) by

Φ(ξkn) = ζkn, n ∈ Z, k = 0, . . . , T − 1. Note that the shift of (ζn) is the op-
erator of multiplication by e−it and that ζ0 = [ζk0 ] = (1/

√
2π)I, where I is

the T × T identity matrix. The mapping Φ transfers the equation (22) into
matrix equation

A(eit)H(eit) = (1/
√

2π)B(eit), (23)

where H(eit) is a T × T matrix function with rows Hk·(eit) = Φ(xk(0)).
Summing up, (22) has a solution x(0) ∈ Mξ iff there is a T × T matrix

function H with rows in L2(CT ) that satisfies (23). Since A(eit)−1 exists a.e.,
the only candidate for H is H(eit) = (1/

√
2π)A−1(eit)B(eit). Hence (22)

has a solution iff all entries of A−1(eit)B(eit) belong to L2. Since (eit − c)−1
is square integrable always except when |c| = 1, we conclude the system
(19) has a proper T -variate stationary solution iff A−1(z)B(z) has no poles
of modulus 1, assuming as always that all entries of the rational matrix
A−1(z)B(z), are written in the simplest forms. If this condition is satisfied
then the solution (x(n)) to (19) is given by xk(n) = Φ−1(e−intHk·(eit)),
where H(eit) = (1/

√
2π)A−1(eit)B(eit). The uniqueness follows from the

fact that, because of a.e. invertibility of A(eit), H(eit) defined above is the
only matrix function satisfying (23). The covariance of (x(n)) is

Kj,k
x = (Φ−1(e−intHj·(eit)), Φ−1(Hk·(eit))) =

∫ 2π

0

e−intHj·(eit)Hk·(eit)∗dt,
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and hence (x(n)) is a.c. and its density is F (eit) = H(eit)H(eit)∗. A
proper T -PC solution the original PARMA system (A(z), B(z)) is therefore
the T -PC sequence that corresponds to (x(n)), that is x(n) = x〈n〉(q(n)),
n ∈ Z. From Theorem 3.1 we conclude that (x(n)) is a.c. and that h(z) =
(1, z, . . . , zT−1)H(zT ), z = eit, is a square factor of the density g of (x(n)),
which proves the formula (21). ut

The first part (existence) of Theorem 4.1 is well known but difficult to at-
tribute to a particular name. In fact more is known. From a description of all
solutions to (19) given for example in [4], p. 11, it follows that if additionally
detA(z) 6= 0 for all |z| = 1, then the system has only one bounded solution
which therefore must be a proper T -PC solution. Regarding computing a
density of a proper T -PC solution, two other different procedures were given
in [12] and [13]. Our formula seems similar to [13].

The formula (21) shows that a density of a proper PC solution to any
PARMA system is a rational function. From the next theorem it follows that
the opposite is also true.

Theorem 4.2 Let (x(n)) be a T -PC sequence. Then the following conditions
are equivalent:

1. (x(n)) is a proper T -PC solution to some PARMA system.
2. (x(n)) has a rational density.
3. there exists a PARMA system (A(z), B(z)) such that:

a. polynomial matrices A(z) and B(z) are left co-prime,
b. A(z) has no zeros in an open disk D<r of a radius r > 1, and B(z) has

no zeros in the open disk D<1 of radius 1,
c. (x(n)) is the only T -PC solution to the system (A(z), B(z)).

The theorem remains valid for T -variate stationary sequences, that is when
in the above formulation we replace T -PC by T -variate stationary, (x(n)) by
(x(n)), and the word PARMA by VARMA.

Proof. Let (x(n)) denote the T -variate stationary block sequence correspond-
ing to (x(n)) and F be its spectrum.

(1. ⇒ 2.) From the proof of Theorem 4.1 it follows that if (x(n)) is a
proper PC solution to some PARMA system (18), then the correspond-
ing block sequence (x(n)) satisfies the associated VARMA system (19)
and that (x(n)) is unitary equivalent to the T -variate stationary sequence
(H(n)) in H = L2(CT ) defined by H(n) = e−intH(eit), where H(eit) =
(1/
√

2π)A−1(eit)B(eit), n ∈ Z. Note that H(z) = (1/
√

2π)A(z)−1B(z) is ra-

tional. The correlation function of (H(n)) isKH(n) =
∫ 2π

0
e−intH(eit)H(eit)∗dt.

Hence (x(n)) is a.c. and its spectral density is F (eit) = H(eit)H(eit)∗ a.e.,
that is H(z) is a rational square factor of F (z). From Lemma 3.1 part 1. we

conclude that the spectrum of (x(n)) is a.c. and h(z) =
∑T−1
k=0 z

kHk·(zT ) is a
square factor of the density g of (x(n)). Since H(z) is a rational matrix, h(z)
is also, and consequently all gj(z) = h(z)h(djz)∗, d = e2π/T , are rational.
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(2.⇒ 3.) Suppose now that (x(n)) is a.c. and its density g is rational. Then
the corresponding T -variate stationary block sequence (x(n) is a.c. and, by
Theorem 3.1, its density F (z) is rational. The Rozanov’s Theorem 2.1 im-
plies that F (z) has a factorization F (z) = G(z)G(z)∗ where G is rational,
analytic in the the open disk D<1 and G(z) has no zeros in D<1. Since en-
tries of F (eit) are integrable, the function G(z) has no poles of modulus 1.
Therefore G(z) is analytic in some open disk D<r, r > 1. The matrix G(0)
is different than 0 since otherwise z = 0 would be a zero of G(z). If we fac-
tor the least common multiple, say q(z), of all denominators of entries of
G(z), then we can write G(z) = P (z)/q(z) where P (z) is T × T polynomial
matrix with no zeros in D<1 and q(z) is a scalar polynomial with all zeros
outside D≤1, and hence outside of a certain disk D<r of radius r > 0. In
particular z = 0 is not a zero of q(z), so q(0) 6= 0. Let A0(z) = (q(z)/q(0))I
and B0(z) = (1/q(0))P (z). Then both are analytic polynomial matrices, the
constant term of A0(z) is the identity matrix I, A0(z)−1 = (q(0)/q(z))I
and A0(z)−1B0(z) = (q(0)/q(z))(1/q(0))P (z) = G(z). Factoring out the
left greatest common divisor L(z) of A0(z) and B0(z) we obtain that
A0(z) = L(z)C(z) and B0(z) = L(z)D(z). Since detA0(z) 6= 0 on some D<r,
r > 1, both detL(z) 6= 0 and detC(z) 6= 0 on D<r, r > 1. Hence L(z)−1

exists and we conclude that C(z)−1D(z) = A0(z)−1B0(z) = G(z). Let S be
an invertible matrix such that SC(0) is lower triangular, and let Q be a uni-
tary matrix such that SD(0)Q is lower triangular. Define A(z) = SC(z)
and B(z) = (

√
2π)SD(z)Q. Since A(0) and B(0) are lower triangular,

(A(z), B(z)) is a PARMA system. Polynomial matrices A(z) and B(z) sat-
isfy conditions a. and b. of 3., and (1/

√
2π)A(z)−1B(z) = C(z)−1D(z)Q,

z ∈ C. Define H(z) = (
√

2π)A(z)−1B(z). Then H(z) = G(z)Q, and hence
H(z)H(z)∗ = G(z)G(z)∗ = F (z). Hence (x(n)) is a proper T -variate sta-
tionary solution to the system (A(z), B(z)). Since (x(n)) is a block sequence
corresponding to (x(n)), the sequence (x(n)) is a proper T -PC solution to
the system (A(z), B(z)). Since detA(z) = (detS)(detA0(z))/(detL(z)) 6= 0
on the circle |z| = 1, the system (A(z), B(z)) has only one bounded solution,
and hence only one T -PC solution.

(3. ⇒ 1.) In view of Theorem 4.1, the condition b. itself implies that that
system (A(z), B(z)) has a proper T -PC solution. Moreover it implies that
detA(z) 6= 0 on the circle |z| = 1, and hence that the system has only one
bounded solution. Therefore the sequence (x(n)) must be a proper T -PC
solution to (A(z), B(z)). ut

An immediate consequence of the above theorem is regularity of every
T -PC sequence with rational density.

Corollary 4.1 Every T -PC (or T -variate stationary) sequence with rational
density is regular. Consequently, if a PARMA (or VARMA) system has a
proper PC (or proper T -variate stationary) solution, then this solution is
regular.
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Proof. Suppose that (x(n)) is a T -PC sequence with rational density g,
and let (x(n)) be the corresponding T -variate stationary block sequence.
From Theorem 4.2, part 3., we conclude that there is a PARMA system
(A(z), B(z)) such that (x(n)) is a proper T -variate stationary solution of
the system (A(z), B(z)) and the rational function H(z) = (

√
2π)A(z)−1B(z)

is analytic in some open disk D<r of radius r > 1. Moreover H(eit) is a
square factor of the density of (x(n)). Being analytic, H has an expansion
H(z) =

∑∞
k=0 Ckz

k, |z| < r, r > 1. Therefore the corresponding MA repre-
sentation of (x(n)) is one-sided and hence (x(n)), and also (x(n)), are regular.
ut

5 PARMA Models

We failed to find a precise definition of a PARMA (or VARMA) model, so
we have assumed the following.

Definition 5.1 A PARMA (or VARMA) system (A(z), B(z)) is called a
PARMA (or VARMA) model if the polynomial matrices A(z) and B(z) sat-
isfy the conditions a. and b. of part 3 of Theorem 4.2

Theorems 4.1 and 4.2 show that every PARMA (or VARMA) model has a
unique T -PC (or T -variate stationary) solution and this solution has rational
density, and vice verse, that every T -PC (or T -variate stationary) sequence
with rational density admits a PARMA (respectively VARMA) model. The
sole reason that we added the condition a. saying that A(z) and B(z) are left
co-prime is to reduce the set of allowed models. Theorem 4.2 remains valid if
we remove this condition from part 3.

Why do we like to have a model? Because then the sequence (b0(n)ξn) in
(18) or (B0ξn) in (17) are innovation sequences for (x(n)) and (x(n)), that
is sp{b0(n)ξn} = Nx(n) and sp{aB0ξn : a ∈ CT } = Nx(n), respectively. At
least we believe so, since so far we can prove it only under some additional
assumptions: a miniphase assumption about B(z), or a full density rank as-
sumption about the sequence. If (b0(n)ξn) (or (B0ξn) ) are innovations then
the one step prediction of an element x(n) (or x(n)) based on the immediate
past is obtained by simply setting ξn = 0 in the model equation (18) (or
ξn = 0 in (17), respectively).

The miniphase assumption is the assumption that detB(z) is not iden-
tically zero ([5], page 25). In the case of VARMA systems, the miniphase
assumption implies that a proper T -variate stationary solution (x(n)) of the
system is a full rank sequence and, hence, its density F (eit) is a.e. invertible.
It is easy to see that inverse also holds true, that is if a T -variate station-
ary sequence (x(n)) has a rational density F with detF (eit) 6= 0 a.e., and
if (A(z), B(z)) is a VARMA model for (x(n)), then B(z) must satisfy the
miniphase assumption and (x(n)) is full rank. Below we discuss a conse-
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quence of the miniphase assumption for PARMA models. Note that until
this moment we have not assumed anything about the rank of a sequence or
the matrix rank of a polynomial matrix B(z).

Definition 5.2 For any a.c. T -PC sequence (x(n)) with density g let G(eit)
be the T × T matrix function defined by Gj,k(eit) = g〈k−j〉(ei(t+2πj/T )), t ∈
[0, 2π), k, j = 0, . . . , T − 1. If detG(eit) 6= 0 a.e. then we say that (x(n)) is
is of a full density rank.

Note that if h is a square factor of g, then G(z) = Hd(z)Hd(z)
∗, where z = eit

and Hd(z) is the matrix whose k-th row is equal h(zdk) as in (8). Also recall
that the rank r of a T -PC sequence (x(n)) is the number of nonzero elements
in a sequence x(k) − (x(k)|Mx(k − 1)), k = 0, . . . , T − 1. A T -PC sequence
(x(n)) is said to be of full rank if r = T .

Theorem 5.1 Suppose that a T -PC sequence (x(n)) has a rational density
g and that (A(z), B(z)) is a PARMA model (18) for (x(n)). Assume addi-
tionally that detB(z) is not identically zero (a miniphase assumption). Then
(x(n)) has full density rank and the sequence (ξn) in (18) is an innovation
sequence for (x(n)). Consequently x(n) is of full rank.

Proof. Let (x(n)) be a T -stationary block sequence corresponding to (x(n))
and F be its density. Let (A(z), B(z)) be a PARMA model for (x(n)). Then
H(z) = (1/

√
2π)A(z)−1B(z) is a square factor of F . Since A(z) has no zeros

in an open disk D<r, r > 1, detA(z) 6= 0 for all |z| < r. By assumption
b(z) = detB(z) is not identically zero and hence, because b(z) is a polynomial,
b(z) 6= 0 everywhere except finitely many z’s. Since B(z) has no zeros in the
open disk D<1, detB(z) 6= 0 everywhere on D<1. Summing up, H(z) is
analytic on D<1 and detH(z) = (1/

√
2π)(detB(z))/(detA(z)) 6= 0 on D<1.

From [11], page 76, we conclude that H(z) is a maximal factor of F , which
means that if we write H(z) as a power series H(z) = (1/

√
2π)

∑∞
k=0 Ckz

k,
|z| < r, then

x(n) =

∞∑
k=0

Ckξn−k, (24)

is an innovation representation of (x(n)). Note that, becauseB(z) =
√

2πA(z)H(z)
and all three are analytic in D<r, B(0) =

√
2πA(0)C0. Also A(0) is in-

vertible because otherwise z = 0 would be a zero of A(z). This and the
fact that by definition both B(0) and A(0) are lower triangular imply that
C0 = (1/

√
2π)A(0)−1B(0) is lower triangular and invertible. From Lemma

3.2, we conclude that the MA representation of (x(n)) generated by (24)

x(n) =

∞∑
k=0

ck(n)ξn−k, ck(n) = C
〈n〉,〈n−k〉
−q(n−k) ,

is an innovation representation of (x(n)), that is (c0(n)ξn) is an innovation for
(x(n)). Since by (15), c0(mT + j) = c0(j) = Cj,j0 6= 0 for all j = 0, . . . , T − 1,
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and m ∈ Z, (ξn) is also an innovation for (x(n)). This implies that the rank of
(x(n)) is T . Moreover, since detH(eit) 6= 0 a.e., the matrix function Hd(e

it)
appearing in (8) is also invertible a.e., and hence G(eit) = Hd(e

it)Hd(e
it)∗ is

also invertible a.e., that is (x(n)) is a full density rank. ut

The next theorem is sort of inverse and shows that if (x(n)) is a T -PC
sequence with full rank rational density, then any PARMA model for (x(n))
must satisfy the miniphase assumption.

Theorem 5.2 Suppose that (x(n)) is T -PC with a rational density g of full
density rank. Let (A(z), B(z)) be a PARMA model for (x(n)). Then detB(z)
is not identically zero, and (ξn) in (18) is an innovation sequence for (x(n)).
Moreover (x(n)) is of full rank.

Proof. Full density rank means that detG(eit) = |detHd(e
it))|2 6= 0 a.e.

From the relation (8) it follows that also |detH(eitT )| = (1/T )|detHd(e
it)| 6=

0 a.e. Hence H(z) = (1/
√

2π)A(z)−1B(z) is invertible except finitely many
z’s. Consequently (A(z), B(z)) satisfies a miniphase assumption and the rest
follows from Theorem 5.1. ut

We do not know whether Theorems 5.1 or 5.2 are true for sequences of
not full density rank r or without a miniphase assumption.

An immediate consequence of the two theorems is that if a T -PC sequence
(x(n)) has a rational density, then (x(n)) is of full rank iff it has a full density
rank (we already know that every T -PC sequence (x(n)) with a rational
density is regular).

In some publications a VARMA (as well as a PARMA) model is defined
as a system (A(z), B(z)) which additionally to the condition b. of part 3 of
Theorem 4.2, satisfies the so called invertibility assumption which says that
detB(z) 6= 0 for all |z| ≤ 1 (e.g. [1], p. 409). The invertibility assumption
(together with b.) immediately gives that a T -variate stationary solution
(x(n)) to the system is proper, full rank, and (ξn) an innovation sequence
for (x(n)). The invertibility assumption is much stronger that a miniphase
assumption which allows detB(z) = 0 for finitely many z’s of modulus 1, and
significantly reduces a number of T -variate stationary sequences with rational
densities that can be modeled in that way. For example a pair A(z) = 1 and
B(z) = 1−z is a model for a univariate stationary sequence x(n) = ξn−ξn−1,
n ∈ Z, but B(z) does not satisfy an invertibility assumption.

Note is that a construction of the rational matrix G(z) in Rozanov’s The-
orem 2.1 is explicit, as well as all constructions presented in this paper are
explicit. Therefore given a PARMA system we can explicitly compute a den-
sity of its T -PC solution via Theorem 4.1, while a construction given in the
proof of Theorem 4.2 allows us to construct a PARMA model for any T -
PC sequence with rational density given its density g. A needed procedure
for finding a left greatest common divisor of polynomial matrices A0(z) and
B0(z) can be found in [5], p. 38, or in [7], sec 1.15.2. Moreover, if g is if full
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density rank then the proofs of Theorems 5.1 and 5.2 show us how to find
coefficients of an innovation representation of (x(n)).

Remark 2 For each T -PC sequence (or T -variate stationary sequence) with
rational density one can find many different PARMA (respectively VARMA)
models, even if we assume the miniphase assumption. This is because there
are many pairs (Ak(z), Bk(z)) satisfying the conditions of Definition 5.1 and
such that that Hk(z)Hk(z)∗, where Hk(z) = (1/

√
2π)Ak(z)−1Bk(z), coincide

a.e. on the unit circle |z| = 1. Although each model serves its prediction
purpose, this lack of uniqueness is not convenient in model identification for it
would be nice to have a unique, preferably minimal, set of model coefficient to
be estimated. Because of this Hannan introduced the notion of identifiability.
The idea is to impose some constraints on allowable models such that each
sequence with rational density would have one and only one model satisfying
these constraints. Identifiability problem for VARMA models is discussed in
[5]. We do not address this question in our paper. �

Appendix: Proof of Lemma 3.1

Let (x(n)) be T -PC, (x(n) = [xk(n)]) be the corresponding T -variate sta-
tionary block sequence, and γ and F be respectively their spectral measures.

1. First we prove that: if (x(n)) is a.c., H
(
eit
)

is a square factor of its

density F
(
eit
)

of (x(n)), Hk· denotes the k-th row of H, and we define

h(eit) =
∑T−1
k=0 e

iktHk·(eiT t), then (x(n)) is a.c. and h is a square factor
of a density g = (g0, . . . , gT−1) of (x(n)). Write Hk· as a Fourier series
Hk·(eit) =

∑∞
n=−∞Hk

ne
int. Then

h(eit) =

[ ∞∑
n=−∞

T−1∑
k=0

Hk
ne
i(nT+k)t

]
=

∞∑
p=−∞

hpe
ipt, where hp := H

〈p〉
q(p).

Denoting d = e2π/T , we obtain that

bj(n) :=

∫ 2π

0

e−inth(eit)h(ei(t+2πj/T ))∗dt

=

∞∑
p=−∞

∞∑
q=−∞

hph
∗
qd
−jq

∫ 2π

0

ei(p−q−n)tdt = 2π

∞∑
q=−∞

hq+nh
∗
qd
−jq.

Because
∑T−1
j=0 d

j(r−q) is nonzero only if q = mT + r for some m ∈ Z, the
inverse discrete Fourier transform of bj(n) is
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(1/T )

T−1∑
j=0

djrbj(r) = (2π/T )

∞∑
q=−∞

hq+nh
∗
q

T−1∑
j=0

dj(r−q)

= 2π

∞∑
m=−∞

hmT+r+nh
∗
mT+r = 2π

∞∑
m=−∞

H
〈r+n〉
m+q(r+n)(H

r
m)∗,

r = 0, . . . , T − 1. Recall that the spectrum of (x(n)) is a vector measure

γ = (γ0, . . . , γT−1) such that aj(n) =
∫ 2π

0
e−intγj(dt), and that Rx(n+r, r) =

(1/T )
∑T−1
j=0 e

2πijr/Taj(r). Since for r = 0, . . . , T − 1,

Rx(n+ r, r) = K
〈n+r〉,r
x (q(n+ r)) =

∫ 2π

0

e−iq(n+r)tH〈n+r〉·(eit)Hr·(eit)∗dt

=

∞∑
p=−∞

∞∑
m=−∞

H〈n+r〉p Hr
m

∫ 2π

0

ei(p−m−q(n+r))tdt

= 2π

∞∑
m=−∞

H
〈n+r〉
m+q(n+r)H

r
m, (25)

comparing this with the inverse discrete Fourier transform of (bj(n)), we
conclude that bj(n) = aj(n), n ∈ Z, j = 0, . . . , T − 1, and hence γ is a.c. and
the density of γj is equal gj(eit) = h(eit)h(ei(t+2πj/T ))∗ a.e.

2. We will show opposite, that is assuming that (x(n)) is a.c., from a
factor h(eit) of a density g of (x(n)) we will construct a square factor H
of the density of F (eit) of (x(n)), showing at the same time that (x(n)) is
a.c.. Write h(eit) =

∑∞
p=−∞ hpe

ipt, so that e−ikth(eit) =
∑∞
q=−∞ hq+ke

iqt.
We want to construct a function whose Fourier coefficients are equal hq+k if
q = mT , and other are zero. It is easy to see that the function fk(eiu)) =
1
T

∑T−1
j=0 e

−ik(u+2πj/T )h(ei(u+2πj/T )) has this property. Indeed, denoting as

previously d = e2πi/T we obtain that

fk(eit) =

∞∑
p=−∞

 1

T

T−1∑
j=0

d(p−k)j

hpe
i(p−k)t =

∞∑
m=−∞

hmT+ke
imTt.

Clearly each function fk is a function of tT , hence there is hk(eit) such that
hk(eiT t) = fk(eit). The Fourier series of hk is hk(eit) =

∑∞
m=−∞ hmT+ke

imt.

Let H(eit) be the T × T matrix function which k-th row Hk· is equal hk, i.e.

Hk·(eit) =

∞∑
n=−∞

Hk
ne
int, where Hk

n = hnT+k,

and let (y(n)) be a T -variate stationary sequence with the densityH(eit)H(eit)∗.
Repeating computation (25) we conclude that the covariance of the T -PC se-
quence (y(n)) corresponding to (y(n)) equals
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Ry(n+ r, r) = 2π

∞∑
m=−∞

H
〈n+r〉
m+q(n+r)(H

r
m)∗ = 2π

∞∑
m=−∞

hTm+n+rh
∗
mT+r.

On the other hand, as it was computed in part 1.,

Rx(n+ r, r) = (1/T )

T−1∑
j=0

djr
∫ 2π

0

e−inth(eit)h(ei(t+2πj/T ))∗dt

= 2π

∞∑
m=−∞

hmT+r+nh
∗
mT+r.

Comparing this with the previous formula we see that Rx = Ry, and hence
they have the same spectrum. We therefore conclude that (x(n)) is a.c. and
its density F (eit) = H(eit)H(eit)∗ a.e.
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