
Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Computation of PARMA Densities and
a PARMA Representation of a PARMA Sequence

Andrzej Makagon
Hampton University (retired)

Krakow, October 25, 2022



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Content

1 Introduction

2 PARMA Systems and Representations

3 Solving PARMA System

4 Constructing PARMA Representation

5 Why Representation?



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Abstract

In my talk given on-line at The XIII Workshop on Nonstationary
Systems, Grodek nad Dunajcem 2020, I showed how the results
from the paper

Makagon, A. ”Periodically Corerlated Sequences with Rational
Spectra and PARMA Systems.” in: Contributions to the 9th
Workshop on Cyclostationary Systems and Their Applications,
Grodek, Poland, 2016

lead to computationally explicit procedures to compute the density
and a representation of a PARMA sequence. Here I want to
elaborate on computational difficulties involved, as well to show
some applications of the procedures.
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PC Sequences

A sequence of complex finite variance and zero mean random
variables x(n), n ∈ Z , is called periodically correlated with period
T (T-PC) if

Rx(s + T , t + T ) = Ex(s + T )x(t + T ) = Ex(s)x(t) = Rx(s, t).

Define

aj(n) :=
T−1∑
r=0

e−ijr2π/TRx(n + r , r), j = 0, . . . ,T − 1.
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Transfer Function of a PC Sequence

Spectrum of (x(n)) is a complex CT -values vector measure
γ(dt) = (γ0(dt), . . . , γT−1(dt)) defined on [0, 2π) such, that

aj(n) =

∫ 2π

0
e−itnγj(dt), n ∈ Z .

If there is a function g(z) = (g0(z), . . . , gT−1(z)) of a complex
variable z ∈ D = {z ∈ C : |z | = 1} such that

γ(dt) = (1/2π)g(e it)dt, t ∈ [0, 2π),

then (x(n)) is called a.c. and g(e it) is called a density of (x(n))
Any CT valued function h(z) = (h0(z), . . . , hT−1(z)), z ∈ D, such
that

g j(e it) = h(e it)h(e i(t+2πj/T ))∗

is called a transfer function of (x(n)) [Makagon, Miamee 2013]
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Corresponding Stationary Sequence

There is one-to one correspondence between T -PC sequences and
T -variate stationary sequences

T − PC 3 (x(n)) ←→ (x(n)) ∈ T -variate stationary

. . . , x(−1), x(0), x(1), . . . , x(T − 1)︸ ︷︷ ︸
x(0)t

, x(T ), . . . , x(2T − 1)︸ ︷︷ ︸
x(1)t

, x(2T ), . . .

x(n) ==


x(nT )

x(nT + 1)
...

x((n + 1)T − 1)
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Transfer Function of a Stationary Sequence

If x(n) = [xk(n)],n ∈ Z is T -variate stationary, then a
T × T -matrix function F (z) = [F j ,k(z)], z ∈ D such that

Ex j(n)xk(0) =

∫ 2π

0
e−intF j ,k(e it)dt, n ∈ Z, 0 ≤ j , k ≤ T − 1,

called a spectral density of (x(n)). Given F (e it), any T ×T -matrix
function H(z), z ∈ D, such that

F (e it) = H(e it)H(e it)∗

is called a transfer function of (x(n)).

Relations between transfer functions of (x(n)) and the
corresponding (x(n)) were found in [Makagon 2017]



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

PARMA System

A system of difference equations

x(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=0

bj(n)ξn−j , n ∈ Z ,

is called a PARMA system of period T if aj(n), bj(n) are
T -periodic and (ξn) are zero mean uncorrelated with unit variance.
It is convenient to write it as

l∑
j=0

aj(n)x(n − j) =
r∑

j=0

bj(n)ξn−j , a0(n) = 1, (1)

A PARMA sequence (x(n)) is an a.c. T -PC solution to the
equation (1) (if exists). A system (1) is called a representation of a
PARMA sequence (x(n)) if for every n

Mx(n) = sp{x(m) : m ≤ n} = Mξ(n) = sp{ξm : m ≤ n}
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Corresponding VARMA System

If we arrange the coefficients aj(n) in (1) into an T × (L + 1)T
matrix [AL . . . A1 A0] where L is such that the matrix contains all
nonzero aj(n)’s as shown below . . . aT (0) . . . a1(0) a0(0) 0 . . . 0

. . . aT+1(1) . . . a2(1) a1(1) a0(1) . . . 0

. . . . . . A(1) . . . . . . A(0) . . . . . .

. . . . . . . . . aT (T − 1) aT−1(T − 1) . . . . . . a0(T − 1)

 ,
(here a0(j) = 1) do the same for bj(n)’s obtaining [BR . . . B1 B0],
and denote (x(n)) and (ξn) to be the corresponding T -variate
stationary sequences then a PARMA system (1) can be written as
a VARMA system

L∑
j=0

Ajx(n − j) =
R∑
j=0

Bjξn−j , n ∈ Z,
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Associated Matrix Polynomials

A PARMA system is therefore a VARMA system for which A0 is
lower triangular and has and unit diagonal and B0 is lower
triangular.
A VARMA (and hence PARMA) system is completely described by
two polynomial matrices

A(z) =
L∑

k=0

Akz
k , B(z) =

R∑
k=0

Bkz
k .

VARMA systems were studied in many publications and books on
Time Series Analysis. Existence and properties of a solution to a
VARMA system depend on zeros of polynomial matrices A(z) and
B(z) (for example [Hannan and Deistler 2012]). A zero of matrix
polynomial is a number z for which the matrix drops its rank. In
this talk we will be assuming that det(A(z1)) 6= 0 and
det(B(z2)) 6= 0 for some z1, z2 ∈ D.
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Computing PARMA Densities

Procedure: Given PARMA system (1)

compute A(z) =
∑L

k=0 Akz
k and B(z) =

∑R
k=0 Bkz

k ;

if det(A(z) = 0 for some z of modulus one, then the system
has no unique a.c. T -PC solution;

otherwise we compute H(z) = A(z)−1B(z) (this is a transfer
function of (x(n)));

compute h(z) = (1, z , . . . zT−1)H(zT ) (this is a transfer
function of (x(n)), [Makagon 2017, Lemma 3.1 (1)] );

compute g j(e it) = h(e it)h(e i(t+2πj/T ))∗, j = 0, . . . ,T − 1.

The function g(e it) = (g0(e it), ..., gT−1(e it)) is the density of an
a.c T -PC solution to the PARMA system (1)
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Example 1

Consider a system

X (0) = X (−1) + ξ0
X (1) = 4X (0) + ξ1 − ξ−1
X (2) = 2X (1) + ξ2 + 2ξ1.

Associated matrix polynomials are

A(z) =

 1 0 −z
−4 1 0
0 −2 1

 , B(z) =

 1 0 0
0 1 −z
0 2 1

 ,

H(z) = A(z)−1B(z) =
1

8z − 1

 −1 −4z 2z2 − z
−4 −8z − 1 −3z
−8 −4 2z − 1

 ,
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Example 1: cont.

A transfer function h(z) = (1, z , . . . zT−1)H(zT ) of (x(n)) is
therefore
h(z) = 1

8z3−1
(
−8z2 − 4z − 1,−8z4 − 4z3 − 4z2 − z , 2z6 + 2z5 − 3z4 − z3 − z2

)
,

and the density g(e it) = (g0(e it), ..., gT−1(e it)) of an a.c. T -PC
solution to this system is

g0(e it) = −(156 cos(t)+188 cos(t)2+32 cos(t)3−32 cos(t)4+115)
(16 cos(3t)−65)

g1(e it) = (66 cos(2t)+20 cos(3t)+2 cos(4t)+66
√
3 sin(2t)−2

√
3) sin(4t)+131)

(32 cos(3t)−130)

+ i −(24 sin(2t)+6 sin(4t)+54 sin(t)−5
√
3−18

√
3 cos(t)+8

√
3 cos(2t)−20

√
3 cos(3t)−2

√
3 cos(4t))

(32 cos(3t)−130)

g2(e it) = (66 cos(2t)+20 cos(3t)+2 cos(4t)−66
√
3 sin(2t)+2

√
3 sin(4t)+131)

(32 cos(3t)−130)

− i (24 sin(2t)+6 sin(4t)+54 sin(t)+5
√
3+18

√
3 cos(t)−8

√
3 cos(2t)+20

√
3 cos(3t)+2

√
3 cos(4t)

(32 cos(3t)−130)
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Example 1: graphs

Figure: Continuous line = Re(g j ), dashed line = Im(g j )



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Constructing PARMA Representation

Suppose that a full-rank T -PC sequence (x(n)) has a rational
density g . Only sequences with rational density admit a PARMA
representation [Makagon 2017, Theorem 3.1]. In order to find a
PARMA representation of (x(n)) we do the following:

STEP 1: express g(e it) = (g0(e it), ..., gT−1(e it)) in terms of
z = e it and compute the density F (z) of the corresponding
T -variate stationary sequence (x(n)) as follows [Makagon
2017, Corollary 3.2]

F j ,k(zT ) = (1/T 2)zk−j
T−1∑
p=0

T−1∑
q=0

dkq−jpg 〈q−p〉(zdp).

where z = e it , d = e i2π/T and 〈m〉 is the reminder in division
of m by T .
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Constructing PARMA Representation: cont.

STEP 2: find two left coprime polynomial matrices A1(z) and
B1(z) with no zeros in the open unit disk, such that if we
denote Γ(z) = A1(z)−1B1(z), then

F (e it) = Γ(e it) Γ(e it)∗, t ∈ [0, 2π)

The system (A1(z),B1(z)) is a VARMA representation of the
corresponding stationary sequence (x(n)),

STEP 3: find a constant unitary matrix V such that
B(0) = A1(0)−1B1(0)V is lower triangular with nonnegative
diagonal entries

Then the system (A(z),B(z)), where A(z) = A1(0)−1A1(z) and
B(z) = A1(0)−1B1(z)V , is a PARMA representation of the T -PC
sequence with density g(e it).
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Matrix Riesz-Fisher Theorem

The fundamental computational problem is STEP 3. Existence
such polynomial matrices follows from matrix version Riesz-Fisher
theorem proved by Rozanov.
[Rozanov 1967, Thm. 10.1] Each a.e. nonegative rational square
matrix function F (e it) on [0, 2π) of rank r can be represented in
the form F (e it) = Γ(e it)Γ(e it)∗ a.e. where Γ(z) is rational and the
rank of Γ(z) is r for all z inside the open unit circle
D<1 = {|z | < 1}.
Construction of such G (z) was given in [Rozanov 1967, Thm.
10.1] and later in [Hannan and Deistler 2012, p. 27]. Exact
computation of G (z) is hopeless. In applied Linear Systems and
MIMO Analysis there are some papers attempted to provide stable
numerical algorithms to find G (z). Recently Geronimo,
Woerdeman and Chung (2021) gave a different proof of Matrix
Riesz-Fisher Theorem which gives hope for more stable algorithms.
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Example 2

We will attempt to find a representation of the 3-PC sequence
(x(n)) with density given in Example 1

g0(e it) = −(156 cos(t)+188 cos(t)2+32 cos(t)3−32 cos(t)4+115)
(16 cos(3t)−65)

g1(e it) = (66 cos(2t)+20 cos(3t)+2 cos(4t)+66
√
3 sin(2t)−2

√
3) sin(4t)+131)

(32 cos(3t)−130)

+ i −(24 sin(2t)+6 sin(4t)+54 sin(t)−5
√
3−18

√
3 cos(t)+8

√
3 cos(2t)−20

√
3 cos(3t)−2

√
3 cos(4t))

(32 cos(3t)−130)

g2(e it) = (66 cos(2t)+20 cos(3t)+2 cos(4t)−66
√
3 sin(2t)+2

√
3 sin(4t)+131)

(32 cos(3t)−130)

− i (24 sin(2t)+6 sin(4t)+54 sin(t)+5
√
3+18

√
3 cos(t)−8

√
3 cos(2t)+20

√
3 cos(3t)+2

√
3 cos(4t)

(32 cos(3t)−130)

The system that yielded this density
X (0) = X (−1) + ξ0
X (1) = 4X (0) + ξ1 − ξ−1
X (2) = 2X (1) + ξ2 + 2ξ1.

is not a representation of (x(n)) since the zeros of system
polynomials are 1/8 and -1/2, respectively (both inside the open
unit disk)



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Example 2 (cont)

STEP 1: First we compute the density F (z) of the corresponding
3-variate stationary sequence

F (z) =


(2z2−22z+2)
8z2−65z+8

2z2−39z
8z2−65z+8

2z3−21z2−6z
8z2−65z+8

2−39z
8z2−65z+8

−8z2−90z−8
8z2−65z+8

−35z2−30z
8z2−65z+8

−6z2−21z+2
8z3−65z2+8z

−30z−35
8z2−65z+8

2z2−85z+2
8z2−65z+8


Then we attempted to find the matrix polynomials A1(z) and
B1(z) as in STEP 2. We obtained only approximate solutions

A1(z) =

[
2.0 −2.18 0.76z + 2.42
0 −4.0z − 41.9 29.8z + 94.9
0 −424.0 −8.0(1.0z − 29.4)(z + 3.19)

]
.

B1(z) =

 0.672z + 2.41 0.173z + 0.407 0.0407z − 0.444
22.1z + 99.7 −2.36z − 5.78 1.29z − 14.0

−1.95z2 + 105.0z + 780.0 −0.501z2 − 9.03z + 1.6 −0.118z2 + 19.7z − 201.0

 .
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Example 2 (cont)

STEP 3. Using Cholesky decomposition we find V and then an
(approximate) PARMA representation (A(z),B(z)) of (x(n))

A(z) =

[
1 −0.136z 0.0475z2 + 0.151z
0 1.0− 0.337z 0.0853z2 + 0.272z
0 −0.191z 1.0 + 0.0376z2 + 0.434z

]

B(z) =

[
0.49− 0.0803 ∗ z 0.0581 ∗ z 0.012 ∗ z2 + 0.464 ∗ z
0.953− 0.144 ∗ z 0.283 ∗ z + 0.514 0.0215 ∗ z2 + 0.687 ∗ z
0.211− 0.0637 ∗ z 0.207 ∗ z + 0.546 0.00948 ∗ z2 + 0.523 ∗ z + 0.992

]
We can multiply any row of the concatenated matrix [A(z),B(z)]
by any polynomial with a zero constant term and add it to another
row, or we can multiply any row of [A(z),B(z)] by any polynomial
and add it any of the following rows . In both cases
Γ(z) = A(z)−1B(z) will be the same, and hence we obtain an
equivalent representation (with possibly lower degrees of terms).
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Example 2 (cont)

By doing this we obtained a ”simpler” PARMA representation

A(z) =

[
1.0 −0.14 ∗ z 0.047 ∗ z2 + 0.15 ∗ z
−1.8 1.0− 0.092 ∗ z 0
−4.1 1.8− 0.25 ∗ z 0.31 ∗ z + 1.0

]

B(z) =

[
0.49− 0.08 ∗ z 0.058 ∗ z 0.012 ∗ z2 + 0.46 ∗ z

0.073 0.18 ∗ z + 0.51 −0.15 ∗ z
−0.044 0.49 ∗ z + 1.5 0.99− 0.11 ∗ z

]
The zeros of A(z) are 10.9083633, -3.18614101, 8.000, and the
zeros of B(z) are 10.9083331, - 3.18614117, - 2.000, all outside
the closed unit disk. The first two zeros of (A(z) and B(z)) are
very close and if we were able to perform exact computations they
would have been removed in the process of dividing (A(z) and
B(z)) by the left greatest divisor.
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Example 2 (cont)

In terms of difference equation a representation that we have
obtained is
x(0) = −0.0475x(−4) + 0.136x(−2)− 0.151x(−1) + 0.012ξ−4 − 0.0803ξ−3 + 0.0581ξ−2 + 0.464ξ−1 + 0.49ξ0

x(1) = 0.0917x(−2) + 1.8x(0) + .178ξ−2 − 0.147ξ−1 + 0.0726ξ0 + 0.514ξ1

x(2) = 0.251x(−2)− 0.314x(−1) + 4.09x(0)− 1.84x(1) + 0.488ξ−2 − 0.114ξ−1 − 0.044ξ0 + 1.49ξ1 + 0.992ξ2

This representation is approximate and not the shortest.
Approximation is very good, the sup distance between g and
solution of the above system is less than 10−8. Even not being the
best, it is good enough for most of purposes, including prediction
and simulation.
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Simulation

Knowing representation of a T -PC sequence (x(n))

x(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=0

bj(n)ξn−j , n ∈ Z ,

allows us to simulate a trajectory of (x(n)), given its density.
To see how it works we used representation from Example 2 to
simulated a trajectory xn, n = 0, . . . , 1799 of a 3-PC sequence
(x(n)) with density g given in Example 2.
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Then we computed smoothed shifted periodogram [Hurd and
Miamee, 2007] and graphed it together with g
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Prediction

If x(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=0

bj(n)ξn−j , is a PARMA

representation of a (x(n)), then then the best linear estimate of
x(n) based on the past

Mx(n − 1) = sp{x(m) : m ≤ n − 1} = Mξ(n − 1)

i.e. the orthogonal projection of x(n) onto Mx(n − 1), is

x̂(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=1

bj(n)ξn−j , n ∈ Z .



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Innovation Coefficients

Every T -PC sequence with rational density can be written in a
unique way in terms of its innovations

x(n) =
∞∑
j=0

cj(n)ξn−j , c0(n) ≥ 0.

Innovation coefficients cj(n) are T-periodic in n and
∑k−1

j=0 |cj(n)|2
is the variance of lag k prediction error of x(n). Having a PARMA
representation (A(z),B(z)) of (x(n)) we can compute the
coefficients ck(n) as follows [Makagon 2017]: first compute
H(z) = A(z)−1B(z) and h(z) = (1, z , . . . zT−1)H(zT ) and then

(1/
√

2π)

∫ 2π

0
e−it(j+k)hk(e it)dt = cj(〈j+k〉), j ≥ 0, k = 0, . . . ,T−1

where 〈m〉 is the reminder in division of m by T .



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Cited Papers

Hannan, E. J., Deistler, M.; The Statistical Theory of Linear
Systems. SIAM (2012)

Hurd, H. L., Miamee, A., Periodically Corerlated Random
Sequences; Spectral Theory and Practice. John Wiley & Sons,
Inc., (2007)

Makagon, A.; Periodically Corerlated Sequences with Rational
Spectra and PARMA Systems. in: Cyclostationarity: Theory
and Methods III, Eds. F. Chaari, J. Leskow, A. Neapolitano, R.
Zimroz, A. Wylomanska, Contributions to the 9th Workshop
on Cyclostationary Systems and Their Applications, Grodek,
Poland, 2016, Applied Condition Monitoring, Springer 2017,
151-172.



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

Makagon, A., and Miamee, A.G.: Spectral Representation of
Periodically Correlated Sequences. Probability Math. Stat. 33
no. 1, 175 – 188, (2013)

Rozanov, Yu. A.: Stationary random Processes. Holden-Day
Series in Time Series Analysis, Holden-Day, (1967)



Introduction PARMA Systems and Representations Solving PARMA System Constructing PARMA Representation Why Representation?

BARDZO DZIEKUJE ZA
ZAPROSZENIE I ZA UWAGE


	Introduction
	PARMA Systems and Representations
	Solving PARMA System
	Constructing PARMA Representation
	Why Representation?

