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Singularities of ODEs (Ordinary Differential
Equations)



Singularities of ODEs

Nonlinear ODEs posses two types of singularities:

fixed - singularities of the coefficients of ODE

movable - the singularities of solutions; position depends on
initial data; not present in linear ODEs;

Example [Goriely]

The equation
ẋ = x3, x(t0) = x0

has the solutions

x(t) = (2(t0 − t) + x−2
0 )−1/2.
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The Painlevé property/Painlevé test

Cauchy approach - local existence

Painlevé approach - global existence, finite form and single
valuedness

Solutions can be globally defined only when we know how to
define its Riemann surface, i.e., the only movable singularities
are poles.

Deduce global structure of solution (types of singularities)
from the local behaviour around some points in the complex
plane. Only sufficient conditions → by the contraposition - it
gives a result when it fails.

In application, global existence is sometimes important.
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Painlevé approach - global existence, finite form and single
valuedness

Solutions can be globally defined only when we know how to
define its Riemann surface, i.e., the only movable singularities
are poles.

Deduce global structure of solution (types of singularities)
from the local behaviour around some points in the complex
plane. Only sufficient conditions → by the contraposition - it
gives a result when it fails.

In application, global existence is sometimes important.
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Problem Statement

ODE as a system of first order DE

d~y(x)

dx
= ~f(~y;x), ~y(x) : x ∈ C → C

n. (1)

Initial value ~y(x0) = ~y0.
Path, e.g., (t ∈ R

+)
Semiline x(t) = x0 + (t+ shift) · eiφ

Spiral x(t) = (x0 + (at+ b)ei·dir·t)eiφ

Domain - path connected region (ideally connected by paths
along which integration is performed).
Condition for singularity proximity - the crude estimation
||~y|| < Large const. Not the state of art, but it can be
improved.
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Domain



Initial Conditions



Integration along path



Full integration



Implementation



Mathematica CAS

d~y(x)

dx
= ~f(~y;x), ~y(x) : x ∈ C → C

n. (2)

If path if prescribed by C1 curve then the integration can be
viewed as an integration on R

+ of the pullback of the equation on
the path

{

d~y
dt = p′(t)~f(x(t), ~y(t))

x′(t) = p′(t),
(3)

where ′ = d
dt .

This system of ODEs can be integrated using standard
Mathematica algorithms.
In the monitor function the conjunction of x being in the domain
and proximity of a singularity have to be checked.
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C++

Implemented using Object Oriented approach...

...however, can be used in a functional way.

Mapper class - maps a path (using ODE, IC, Domain
constraints, numerical solver) onto the solution along the
path. Some resemblance to the higher-order functions.

Easy to parallelize as the integrations along curves are
independent - parallel producer-consumer problem.
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C++ (parallel)

SimplyConnectedDomain

Mapper Mapper Mapper Mapper

DomainSolution

save PathSolution
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The Amdahl’s law is preserved at the beginning up to 4 threads -
parallel executed code is about 90%. Then processes start to block
each other. New way of parallelization needed.
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Equations [Kycia, Filipuk]

The Emden-Fowler equation

d2u(x)

dx2
+

α

x

du(x)

dx
+ xnu(x)p = 0 (4)

Generalized Isothermal Sphere equation

d2u(x)

dx2
+

α

x

du(x)

dx
− xne−u(x) = 0, (5)

u(0) = 0

Location of singularities

A nonzero analytic solutions of the Generlized Emden-Fowler and
Isothermal Sphere equations have n+ 2 singularities located
symmetrically with respect to the origin on the rays connecting the
origin with all (n+ 2) roots of −1 in the complex plane.
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The Emden-Fowler equations [Kycia, Filipuk]
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(d) n = 2

Figure : p = 5 and u(0) = 1.5, the Generalized Emden-Fowler solution.



Generalized isothermal sphere equations

Figure : u(0) = 0, n = 1
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The method is simple, straightforward, brute force but it
works.

C++ code is good for robust (HPC) computations and it is
ready for linking with Mathematica by MathLink to provide
’user-friendly’ interface.

The code is flexible - it can be extended by new methods of
integration, types of domains, curves (more effective swapping
of domain), methods for determining proximity of
singularities, etc.
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Amdahl’s law

Amdahl’s law

S(n) =
T (n)

T (1)
=

1

B + 1
n(1−B)

n - no. threads of execution;
B ∈ [0; 1] - the fraction of the algorithm that is strictly serial;
T (n) - time of execution of n threads;

see, http : //en.wikipedia.org/wiki/Amdahl%27s law
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