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Example [Goriely]

The equation

has the solutions
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The Painlevé property/Painlevé test

@ Cauchy approach - local existence

@ Painlevé approach - global existence, finite form and single
valuedness

@ Solutions can be globally defined only when we know how to
define its Riemann surface, i.e., the only movable singularities
are poles.

@ Deduce global structure of solution (types of singularities)
from the local behaviour around some points in the complex
plane. Only sufficient conditions — by the contraposition - it
gives a result when it fails.

@ In application, global existence is sometimes important.
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@ ODE as a system of first order DE
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o Initial value 4(z¢) = 7.
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Problem Statement

@ ODE as a system of first order DE

d?zl(xx) _ _'(g';x)7 y(z) :x € C— C". (1)

@ Initial value y(zp) =
@ Path, eg., (t€RT
o Semiline 2(t) = xo + (t + shift) - e’
o Spiral z(t) = (zg + (at + b)e"4it)ei?
@ Domain - path connected region (ideally connected by paths
along which integration is performed).
@ Condition for singularity proximity - the crude estimation
||7]| < Large const. Not the state of art, but it can be
improved.
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Initial Conditions




Integration along path




Full integration




Implementation



Mathematica CAS

dlzl(;) ]E’( x), ylx):zeC—C" (2)

If path if prescribed by C! curve then the integration can be
viewed as an integration on R of the pullback of the equation on

the path
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Mathematica CAS

T = f(y;x), ylx):zeC—C" (2)

If path if prescribed by C! curve then the integration can be
viewed as an integration on R of the pullback of the equation on
the path

{ 4 — o (1) fla(t), T(t)) (3)

I d
where ' = 7

This system of ODEs can be integrated using standard
Mathematica algorithms.

In the monitor function the conjunction of = being in the domain
and proximity of a singularity have to be checked.
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C++

@ Implemented using Object Oriented approach...
@ ...however, can be used in a functional way.

@ Mapper class - maps a path (using ODE, IC, Domain
constraints, numerical solver) onto the solution along the
path. Some resemblance to the higher-order functions.

@ Easy to parallelize as the integrations along curves are
independent - parallel producer-consumer problem.



C++ (parallel)
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The Amdahl’s law is preserved at the beginning up to 4 threads -
parallel executed code is about 90%. Then processes start to block
each other. New way of parallelization needed.
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Equations [Kycia, Filipuk]

2u(x o du(x
ddg;(z ) + }dd(x) + z"u(z)P =0 (4)

Generalized Isothermal Sphere equation

d?u(x) N a du(z)
dx? x dr

— gleu®) — 0, (5)

u(0) =0

Location of singularities

A nonzero analytic solutions of the Generlized Emden-Fowler and
Isothermal Sphere equations have n + 2 singularities located
symmetrically with respect to the origin on the rays connecting the
origin with all (n + 2) roots of —1 in the complex plane.




The Emden-Fowler equations [Kycia, Filipuk]

(c)n=1 (d)n=2

Figure : p =5 and u(0) = 1.5, the Generalized Emden-Fowler solution.



Generalized isothermal sphere equations

AddOLoamws
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Conclusions

@ The method is simple, straightforward, brute force but it
works.

@ C++ code is good for robust (HPC) computations and it is
ready for linking with Mathematica by MathLink to provide
'user-friendly’ interface.

@ The code is flexible - it can be extended by new methods of
integration, types of domains, curves (more effective swapping
of domain), methods for determining proximity of
singularities, etc.
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Amdahl’s law
Amdahl’s law

T(n) 1
T(l) B+2i(1-B)

n - no. threads of execution;
B € [0; 1] - the fraction of the algorithm that is strictly serial;
T'(n) - time of execution of n threads;

Amdahl's Law
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see, http : //en.wikipedia.org/wiki/Amdahl%27s law
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