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Abstract

The main goal of this thesis was to find, examine and describe the most

suitable way of using deep learning methods that will be able to help (or

completely automate) the process of recognizing and classifying several types

of galaxies based on photos drawn from the Sloan Digital Sky Survey.

Morphological analysis of photos of galaxies is very useful for studying

galaxy formation and evolution, but the amount of data that Sloan Digital

Sky Survey and other surveys have provided us is way too superior - manual

classification is a tedious task for researchers and volunteers, so there is a

great need in finding proper algorithms that may help astronomers at this

venture.

Due to vast growth in computational power and significant increase in

interest in machine learning models in almost every area of life, the next

logical step is to use this potential and try to create autonomous classification

methods that will help us in better understanding the world we live in.

Keywords: Machine Learning, Deep Learning, Deep Neural Network, Galaxy

Morphological Classification, Sloan Digital Sky Survey.
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1
Introduction

Structural characteristics of galaxies has been a long-term goal in cosmology

- it is an important area of interest in the large-scale study of the observ-

able universe. Galaxy classification, especially morphological classification is

the first and maybe the most important of the steps towards understanding

of the origins and the evolution processes of galaxies, and the evolution of

the Universe in general. Galaxy classifications are important for two major

reasons [35]:

• Provide comprehensive catalogues for astronomical and statistical stud-

ies;

• Study corelations between structures of the galaxies and processes oc-

curring during the early stages of the Universe.

To make such studies possoble researchers from all around the world

gathered much information on the content and character of the universe

structure through sky surveys and mappings of the various wavelength bands

of electromagnetic radiation. One of the most important projects in this

field was The Sloan Digital Sky Survey (SDSS) - the observation program

was launched in 2000 and has now led us to the discovery of almost 930 000

galaxies, by covering over 35% of the sky [22].

In the recent years astronomy has become an immensely data-intensive

field. It is not hard to guess that such a huge amount of data requires a

completely new approach that can be helpful in analysis these datasets. The
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Chapter 1. Introduction

amount of images of galaxies produced every year is impossible to be reviewed

by humans - this problem creates a need for techniques that could automate

the difficult problem of classification. Machine learning methods seem to be

most suitable for this kind of work.

Machine learning techniques have been used in astronomy and astro-

physics for more than twenty years, but only now, thanks to current state

of technological advancement, we have access to larger training sets and al-

most unlimited computing resources, which can greatly improve accuracy

and complexity of trained models. The most promising and suitable meth-

ods than can find use in cosmological researches are deep learning algorithms,

especially those that are based on convolutional neural networks (CNN) [41].

The Sloan Digital Sky Survey led us to The Galaxy Zoo Project, a citizen,

web-based science project that aimed to obtain morphological classifications

for roughly a million objects, including galaxies. Creators of this project

harnessed the power of the internet by recruiting members of the public and

ask them to perform classifications by eye [11]. However, as data sets grow

to contain billions of galaxies, approach of this kind becomes less and less

feasible. In cases like that, the deep learning algorithms find their applica-

tions.

This diploma thesis is focused mostly on the algorithmic and computional

part of the morphological classification of galaxies and deep learning methods

in general. The main effort is development of efficient neural network-based

algorithms capable of reliable object type classification based on data deliv-

ered by The Galaxy Zoo Project.

This thesis is organized as follows: The first parts contain general intro-

duction to galaxy classification and description of machine learning systems.

The next sections holds overall specification of used software technologies

and datasets. Next we move on to the more accurate description of Artifi-

cial Neural Networks and after that we will discuss applied approach to the

stated problem.
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2
Galaxy morphological classification

Galaxies are gravitationally bound celestial systems composed, as current

cosmology suggest, of billions of stars, stellar remnants, interstellar mediums

and dark matter. Many of them are thought to have black holes at their

centers. The Milky Way’s central black hole, Sagittarius A, has a mass over

four million times greater than the mass of the Sun [2][23].

Most of the stars are associated in a disks that are about 100 000 light

years across in diameter and 3 000 light years thick and the most recent

number of galaxies in the observable universe is estimated from 200 billion to

2 trillion or more, all of them contais more stars than all the grains of sand on

Earth. Most of the galaxies are 1 000 to 100 000 parsecs (”a parsec is defined

as the distance at which 1 Astronomical Unit subtends an angle of 1 second

of arc [1/3600 of a degree] - 1 parsec ≈ 3.26 light years” [6]) in diameter and

are separated by distances on the order of megaparsec (millions of parsecs).

This space between them is filled with a gas having an average density of

less than one atom per cubic meter and the most of them are organized into

groups, clusters, and superclusters. At the largest scale, these groups are

generally arranged into sheets and filaments surrounded by immense spaces.

The largest association of galaxies yet recognised is a cluster of superclusters,

named Laniakea [30][35][38].

Galaxies form over billions of years, and can be marked according to

their morphology – their shape and general visual appearance – which gives

researcher much information about their evolution and composition. Mor-

3



Chapter 2. Galaxy morphological classification

phology is a reasonable starting point for understanding galaxies. Classify-

ing galaxies into their morphological categories is very similar to classifying

stars into spectral types and can carry on to important astrophysical in-

sights. Galaxy morphological classification is strongly correlated with star

formation history - galaxies where stars formation ceased billion years ago

tend to look different from those where formation of the stars continue to

the present time.

There are a few systems in use by which galaxies can be identified and

classified by their morphologies, but the most famous is the Hubble sequence,

contrived by Edwin Hubble and later expanded by Allan Sandage and Gérard

de Vaucouleurs [35].

These scheme will be described in subsequent subsection.

2.1 Hubble sequence

The most commonly used classification system, both in professional astro-

nomical studies as well as in amateur astronomy, is the model devised by

Sir Edwin Hubble in 1936 an expanded by Allan Sandage and Gérard de

Vaucouleurs in later years.

Hubble divided regular galaxies into four main classes, based on visual

appearance of galaxy images stored on photographic plates:

• ellipticals: E0, E3 , E5, E7,

• spirals: S0, Sa, Sb, Sc,

• barred spiral: SBa, SBb, SBc,

• lenticulars: S0

• irregulars: Im, IBm, Irr I, Irr II.

This Hubble sequence schema is commonly referred to as the ”Hubble

Tuning Fork” and is traditionally illustrated as shown in the figure below:

4



Chapter 2. Galaxy morphological classification

Figure 2.1: Hubble sequence schema [46]
.

Basically, the Hubble schema represents the presented rule by asking the

following questions [46]:

1. Is there overall regularity or symmetry to the galaxy?

2. Is the light concentrated in the center of the galaxy?

3. Is there a disk or even disk’s seed in the galaxy representation?

4. Are there any spiral arms in the galaxy image?

5



Chapter 2. Galaxy morphological classification

2.2 Classes of galaxies

Elliptical and lenticular galaxies are well known as “early-type” galaxies, and

spirals and irregular ones are related to “late types”.

It was thought that the disks of spiral galaxies were observed to be home

of many young stars and areas of active star formation processes, while el-

liptical galaxies were composed of most old stellar populations. Current

predictions suggests quite the opposite [40]: the early Universe seems to be

dominated by spiral and irregular types. Currently favored idea of galaxy

formation suggest that present ellipticals galaxies formed as a result of com-

bination (link) between these early-stage type building blocks [40]. Barred

spiral galaxies may also evolved from spiral galaxies, whose gas has been

run-down, leaving no fuel for future star formation [29].

2.2.1 Ellipticals

Elliptical galaxies are mellow, amorphous systems with a continuously, slowly

declining brightness distribution (progressing from the center), and with the

lack of inflections, breaks, zones or structures and no sign of a disk. They

appear elliptical in shape in photographic images and nearly all of them have

the same color - look much the same at different wavelengths, because they

are dominated by old stars and are also devoid of gas or dust.

They are indicated by the letter E, followed by an integer digit n, that

represents their degree of ellipticity in the sky: ε = 1− b
a
, where a and b are

semimajor and semiminor axes of the ellipse:

Figure 2.2: Ellipticity ancillary figure.
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Chapter 2. Galaxy morphological classification

By convention, n is multiplied ten times bye the ellipticity ε of the galaxy

and rounded to the nearest integer. Rounded ellipticals are classed as E0 and

highly flattened ellipticals are classed as E7 [29][35].

Figure 2.3: The giant elliptical galaxy ESO 325-G004 [29].

7



Chapter 2. Galaxy morphological classification

Figure 2.4: The dwarf elliptical galaxy M32 [46].

2.2.2 Spirals

A spiral galaxy contains a flattened disk, a central-concentrated aggregation

of stars known as the bulge and a two-armed stars forming spiral structure.

Almost half of all spiral types are observed with a bar-like structure, that is

extending from the central, where the spiral arms begin [46].

8



Chapter 2. Galaxy morphological classification

The Hubble diagram contains two branches of the spiral types:

• the upper branch: regular spirals galaxies (S);

• the lower branch: barred spirals galaxies (SB).

Both types are further subdivided according to the detailed appearance

in their internal structures:

• Sa (SBa) - smooth, tightly shaped spiral arms; bright and large central

bulge;

• Sb (SBb) - less tightly shaped arms; less fainter bulge;

• Sc (SBc) - loosely shaped arms, consisting mainly of individual stellar

clusters and nebulae; smaller and fainter bulge;

• Sd (SBd) - very loosely shaped, fragmentary arms; most of the lumi-

nosity is located in the arms ( not in the the bulge).

Figure 2.5: Two sequences of spiral galaxies [46].
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Chapter 2. Galaxy morphological classification

Figure 2.6: The Pinwheel Galaxy (Messier 101/NGC 5457): a spiral galaxy
classified as type Scd [29].

Figure 2.7: The barred spiral galaxy NGC 1300: a type SBbc [29].

10



Chapter 2. Galaxy morphological classification

2.2.3 Lenticulars

Lenticular galaxies (designated as S0) - transition class between ellipticals

and spirals galaxies. S0 types are similar in appearance to an elliptical galaxy,

consist as well a bright central bulge surrounded by an extended, disk-like

structure (but have no visible spiral structure). The central component is,

in most cases, the dominant source of light.

The lenticular type is difficult to distinguish from E0 elliptical type, mak-

ing the classification of many galaxies highly uncertain. Lenticulars can also

have a central bar (like the spiral ones), in which case they are labeled by

SB0 [29].

Figure 2.8: The Spindle Galaxy (NGC 5866), a lenticular galaxy with a
prominent dust lane in the constellation of Draco [29].

11



Chapter 2. Galaxy morphological classification

Figure 2.9: Spiral galaxy UGC 12591, classified as an S0/Sa galaxy [29].

2.2.4 Irregulars

The most of representatives of this class do not fit into the Hubble sequence,

due to no regular structures: grainy, highly irregular agglomeration of lumi-

nous areas. They does not have noticeable symmetry and obvious central

part.

Hubble defined a few classes of irregular type galaxies:

• Irr I -lack of a central bulge and spiral structure and having an asym-

metric profile - they contain a lot individual clusters of young stars;

• Irr I - smoother, asymmetric look and are not clearly resolved into

individual stars or clusters of young stars;

• Im - highly irregular galaxies.

12



Chapter 2. Galaxy morphological classification

Figure 2.10: The Large Magellanic Cloud (LMC) - a dwarf irregular galaxy.
A satellite galaxy of the Milky Way [29].

Figure 2.11: Messier 82 (M82) - a highly irregular galaxy [29].

13



Chapter 2. Galaxy morphological classification

Irregular types are similar to spirals in having both old and young stars,

as well as dust and ionized gas, but they are lacking in the spiral structure

that triggers star formation process.

2.3 Visual summary

Figure 2.12: A visual summary of the Hubble model [18].
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3
Artificial Intelligence, Machine

Learning and Deep Learning

When programmable computers were first imagined, people wondered if

they might ever become intelligent in the way we perceive this process. da

Lovelace, an English mathematician and the doughter of Lord Bayron, con-

sidered the concept of ”thinking machine” (1842), over a hundred years before

a cumputer was built [1].

Todays artificial intelligence models, such as machine learning or deep

learning, are well developed field with many practical applications, active

research topics and extraordinary future goals. Intelligent software is about

to understand speech and images, make diagnoses in medicine, automate

routine labor and support scientific research [37].

Artificial Intelligence (AI), Machine Learning (ML) , and Deep Learning

(DL) - these terms are related and overlapping with each other.

AI is rather general definition - it involves machines and algotirhms that can

perform tasks that are characteristic to human intelligence, which includes

things like problem solving, recognizing objects and sounds, understanding

language, planning and learning.

While AI is the core, machine learning methods are simply a way of achieving

Artificial Intelligence: ML is one subfield of AI. The core principle of these

methods is that machines take data and use them to ”learn” for themselves -

at its most basic level, it is the method of using algorithms to analyze data,

15



Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

learn from it, and then make a prediction and draw conclusions about the

problem that we was trying to solve [42].

Deep Learning (or sometimes Deep Neural Nets) is one of many ways of

achieving machine learning that was inspired by the functions and struc-

ture of the brain. DL uses Artificial Neural Networks (ANNs), algorithms

that are trying to mimic and evolve the biological structure of the brain -

interconnections of many neurons [34].

We can think of this differences like as a set of Matryoshka dolls that

are nested within each other, beginning with the largest and working out.

Artificial Intelligence is the main, biggest set, while Machine Learning and

Deep Learning are subsets, grouped in each other:

Figure 3.1: Relationship between AI, ML and DL [36].
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Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

3.1 Artificial Intelligence

”The science and engineering of making intelligent machines,

especially intelligent computer programs.”

- John McCarthy, father of AI

Artificial Intelligence is the widest way of thinking about advanced, com-

puter intelligence.

In 1956 at the Dartmouth Artificial Intelligence Conference, the AI was de-

scribed as: ”Every aspect of learning or any other feature of intelligence can

in principle be so precisely described that a machine can be made to simulate

it.” [44].

AI reffers to the ability of a computer program or a computer-enabled

robotic system to proces information and develop outcomes in a manner

simmilar to the thought processes of human beeings in learning, decision

making and solving problems. The main goal of AI system is to develop

structure capable of tracking complex problems in a ways simmilar to human

logic and reasoning.

Figure 3.2: AI system [34].

17



Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

The technology can be categorized into three major groups: [42]

• general AI - can all of the characteristics of human intelligence;

• narrow AI - can obtain some aspects of human intelligence: it is

skilled at one specific task but lacking in other areas;

• superintelligent AI - system that surpasses humans in every field of

knowledge.

AI has drastically evolved over the past few decades, to the point when

we all use some part of it, even without knowing about the fact.

Figure 3.3: Evolution of AI. [34]

3.2 Machine Learning

Machine Learning is one of subfields of AI. It is a type of AI that simplify

computer ability to learn from data and essentially learns by teaching itself

to evolve as becomes exposed to new and changing inputs.

18



Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

ML systems can quickly adopt trained knowledge gathered from large

data sets and apply it on fileds like: translation, facial recognition, speech

recognition, object recognition etc. ML allows systems to learn by recognizing

patterns on its own and make predictions, unlike traditional, hand-coding

software programs that requires specific instructions to complete a task.

Figure 3.4: How ML works [34].

The main elements of machine

learning algorithms are statistical

and predictive analysis used to find

patterns and hidden insights based

on observed data from previous it-

erations, without being previously

programmed on where to search for

these patterns [34].

There ara few achine learning

classification system but the most

common is the one that divide ML

into three groups depending on the

nature of the learning inputs or out-

puts from a learning system, so it

depends of types of problems and

tasks.

Three main categories of ML [37]:

• spervised learning: - a computer is presented with example inputs

and outputs data;

• unsupervised learning - no example result are given to the learning

algorithm;

• reinforcement learning - a program interacts with a dynamic envi-

ronment and learn on its own mistakes.

19



Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

Deep learning is only one of many ways of achieving machine learning.

The other popular methods are [31]:

• decision tree learning,

• association rule learning,

• artificial neural networks,

• inductive logic programming,

• support vector machines,

• learning classifier systems.

• bayesian networks,

• representation learning,

• reinforcement learning,

• similarity and metric learning,

• sparse dictionary learning

• genetic algorithms,

• clustering,

• rule-based machine learning,

• learning classifier systems.

3.3 Deep Learning

Deep learning is one of many approaches of machine learning and at the same

time it is a new area of ML research, and thanks to that we are getting closer

to general artificial intelligence.

It relates to study of deep neural networks in the human brain, namely

the interconnecting of many neurons - the deep learning tries to emulate

the functions of inner layers of the human brain by creating knowledge from

multiple layers of information processing. Thanks to this approach, the more

data is added, the capabilities of system gets better. According to that,

Artificial Neural Networks (ANNs) are algorithms that try to mimic the

biological structure of the brain, but, unlike the biological brain where a

neuron can only connect to any other neuron within a specified physical

20



Chapter 3. Artificial Intelligence, Machine Learning and Deep Learning

distance, artificial neural networks have discrete layers between neurons and

can choose directions of data propagation.

Each layer can choose a specific feature to learn (for example curves

or edges in image recognition). It is this layering process that gives deep

learning its name - the depth is created by using multiple layers [36].

Figure 3.5: Illustration of a deep learning model [37].

Deep Learning, in the most basic terms, can be explained as a probability

system. Based on a dataset, it is able to make decisions and predictions with

a some degree of certainty by assigning a weighting to input of each artificial

neurons. Each weight is correlated to probability of how correct or incorrect

was the prediction. The final result is determined by the total of those

probabilities [36].
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3.4 Applications

One of the most useful applications of Machine Learning is image recogni-

tion, which in most cases performs better than humans: from the range of

identifying simple objects like traffic signs or handwritings to recognizing

tumors in MRI scans and indicators for cancer in blood cells. Many people

may do not know that they encounter machine learning applications in their

everyday lives. Algorithms in social media services are used to trend impor-

tant topics or hashtags. E-commerce corporations build models that predict

customers behavior, e-mail providers builds anty-spam filters usig ML [36].

By te use of AI methods, scientists build models to predicts strokes and

seizures, identifies heart failure, predict hospital readmissions, helps synthe-

sis of new compounds and much more [9].

Figure 3.6: Illustration of a deep learning model [9].
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4
Applied technologies

In this section the computer tools that will be useful in constructing our deep

learing system will be described. We will start from Python and NumPy and

then we will move to description of pure machine learning libraries.

4.1 Python programming language

Python is a high-level programming language that is widely used for general-

purpose programming, created and released in 1991 by Guido van Rossum.

Due to its highly readable syntax, open source philosophy, support for multi-

paradigm programming and use of dynamic typing it has become one of the

most commonly used programming language by the scientific community.

However, its main advantage seems to be the support for variety of libraries,

suplements and frameworks created for deep learning research [20].

4.1.1 NumPy

NumPy is the fundamental library for scientific computing with Python lan-

guage [17].

Among other things, it provides:

• N-dimensional array objects manimulation tools,

• powerful linear algebra, tensors manipulation and random numbers ca-
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pabilities,

• multi-dimensional containers of generic data,

• possibilities to define arbitrary data-types.

4.1.2 TensorFlow

TensorFlow is an open source Python and C++ library for machine learning

across a range of tasks. It was developed in 2015 by Google Brain Team

mainly for training neural networks to detect and solve patterns and correla-

tions, can run on machines with multiple CPUs and GPUs and it available on

all popular operating systems. The library is still being developed, optimized

and improved [24].

4.1.3 Keras

Keras is a powerful, open source and easy-to-use Python library than can

run on the top of TensorFlow and is suitable for developing and evaluating

deep learning models. It includes efficient numerical subsystem that allows

us to define and train neural network models. The library contains as well

variety of implementations for commonly used neural network blocks (such

as layers, objectives etc.) and host tools for image and text processing data.

Keras was originally developed in 2015 by François Chollet [14].

4.2 CUDA technology

Artificial Neural Networks architectures have been developing for more than

a dozen years, but only now we can notice drastic jump in their performance

and capabilities. The reson for this is progress that has been made in parallel

computing techniques, especially in GPU-powered calculations.
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CUDA (Compute Unified Device Architecture) is a parallel computing

platform and application programming interface system that allows software

developers to use graphics processing units (GPUs) for general purpose pro-

cessing calculations. It was developed in 2007 by Nvidia corporation, the

largest manufacturer of graphics chips and since then the system is widely

supported across all parrarel programing cloud-based virtual machines [28].
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5
Datasets

5.1 Sloan Digital Sky Survey

Sloan Digital Sky Survey (SDSS) is the major and most ambitious astronom-

ical survey that has been ever undertaken. It provides a multi-filter imaging

and spectroscopic redshift map of about a million galaxies and quasars, that

covers over 35% of the sky [22].

The survey was performed by using a 2.5-m wide-angle optical telescope,

which was located at Apache Point Observatory in New Mexico, with the

cooperation of more than 40 institutions from all over the world. The cam-

era was retired in 2009 and since then the telescope has worked entirely in

spectroscopic mode. The project was named in honor the Alfred P. Sloan

Foundation - the contributor of substantial funding.

The single shot covers about 1.5 square degree of the sky and is recorded

in five colors by a CCD camera. Data collection began in 1998 and upon this

day brought the discovery of 930 000 galaxies and over 120 000 quasars [32].

The survey is conducted in stages:

• SDSS-I - 2000–2005,

• SDSS-II - 2005–2008,

• SDSS-III - 2008–2014,

• SDSS-IV - 2014–2020.
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The SDSS-IV survey will also include observations from the southern hemi-

sphere by the Irénée du Pont Telescope from Las Campanas Observatory,

Chile.

Sloan Digital Sky Survey releases the available data over the Internet,

mainly by the SkyServer [21].

5.2 Galaxy Zoo

Galaxy Zoo [11] is a worldwide, crowdsourced astronomy project (a citizen

science project) which involve people to help scientists in the task of mor-

phological classification of large numbers of galaxies obtained from the Sloan

Digital Sky Survey to determine the different aspects and separate galxies

into classifications [39].

The Galaxy Zoo project has gone through few stages:

1. The first stage focused on determining if a galaxy was elliptical, spiral

or a merger of two galaxies.

2. Galaxy Zoo 2 asked volunteers for more details, include measurements

of the bulge size, structure of spiral arms or presence of bars.

3. The present Galaxy Zoo challenges combines the newest imaging from

the SDSS with the Hubble’s CANDELS project[4] that is able to take

ultra-deep images of the Universe.

5.2.1 Galaxy Zoo 2

Morphological data for stage two of Galaxy Zoo were collected by a web-

based interface. [11] A Volunteer needed to register with a username and the

interface guided him through whole classifications process by using a nested

decision tree, consists of 11 questions with 2-7 responses to them.
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Each user’s classification is the outcome of a particular path down a de-

cision tree. Multiple volunteers (about 50) classified the same galaxy, gener-

ating multiple paths through the decision tree and and assigned probabilities

for branch (node).

Based on these probabilities researchers were able to produce final outcome

generated for each galaxy image [13].

Figure 5.1: Decision tree used for the Galaxy Zoo 2 [39].

Throuh the 14-months process, 83 943 volunteers obtained 16 340 298

classifications of 304 122 galaxies [39].

Data gathered from this phase of classification is being used for the purpose

of this thesis.
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6
Deep learning and Artificial Neural

Networks

Deep learning methods are based on a class of algorithms called Artificial

Neural Networks (ANNs) constructed of many (deep) layers. Such networks

existed for many decades, but only now, due to Geoffrey Hinton’s break-

through researches from the border of cognitive psycholoy and computer

science [12][33], and increase in computing capabilities using GPUs procesor

units, we are able to train deep architectures with such accuracy, that al-

lows us to use the models in computer vision, natural language processing or

automatic speech recognition [43].

The idea of deep learning is to create a model that tries to express given

data at multiple levels of abstraction and by that, automatically find accurate

representations from the input data itself. Such models consist of several

hierarchy-based layers. Each layer have a gradually more abstract image of

the input data than the previous layer - the process is done by calculation

a nonlinear transformation of inpus. Parameters of the transformation are

computed by training models on a specific dataset [45].

6.1 Artificial Neural Networks

Artificial neural networks (ANNs), as its name suggests, are a family of ma-

chine learning techniques inspired by biological neural conecctions - modeled
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and mapped after the brain structures. ANNs contain of a set of deep learn-

ing units called neurons (named after biological neurons) that learn how to

convert input signals into compatible, corresponding outputs [5].

Biological Neural Networks consist of Biological Neurons - the core com-

putational unit of the human brain structure. A single biological neuron

contains: a cell body, an axon and dendrites and by these components such

neuron can processes and transmit an information to other connected neu-

rons by emitting electrical signals. Each neuron can produce output signals

alongside its axon and inputs from its dendrites - Different axons and den-

drites are connected via synapses and these connections shape a human brain

by the form of biological network.

The human nervous system consist of approximately 86 billion neurons that

are connected with approximately 1015 synapses [7].

Artificial Neural Networks are inspired by its biological equivalent - they

try to explain and formulate the biological model in a computational form.

In the basic model, an artificial neuron can hold a finite number of inputs

(with weights assigned to them) and a transfer (activation) function that

sends the information spikes alongside the axon: all the informations get

summed in the cell body. If the sum exceeds a established threshold, the

neuron sends the signal and whole operation repeats. The output data of a

single neuron is the outcome of the transfer function applied to the weight

sum of inputs. Artificial neurons are combined with each others and together

they form artificial neural networks [7][5].
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Figure 6.1: A representation of a biological neuron (left) and its mathematical
model (right) [7] [5].

6.2 Feed-forward Neural Networks

Neural Network models are mostly organized and represented as distinct

layers of neurons. For regular neural networks, the most common type are

the fully-connected, feed-forward neural networks This kind of networks have

three types of layers: input, hidden and output, where neurons between two

nearest layers are pairwise connected - signal travels from the input node,

through the hidden one and ends at the output layer.

Figure 6.2: A 3-layer feed-forward neural network with three inputs, two
hidden layers of 4 neurons each and one output layer [5].
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6.3 Activation Functions

The main role of activation functions is to make a neural network non-linear

by transforming the weighted sum of inputs that come into the neurons. The

function should include nonlinearity to reflect complex structures of the data

[7].

The most popular activation functions:

Figure 6.3: The most popular activation functions. [5]

6.4 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets or CNNs) are a special type of

feed-forward networks that were designed to emulate the behaviour and struc-

ture of a visual cortex of the brain. They are most suitale for visual recogni-

tion tasks.

Standard feed-networks requires connection between all neurons, result-

ing in too complex network structure. When a network needs to be trained

on a large dataset, the cost of complexity grows (more layers needs to be

added) - the more complex the network is, the more computational power is

needed. ConvNets have special proprties that allows the network to encode

certain properties of given datasets (such as specific details on images) by

adding to the network model additional layers: convolutional layer and

pooling layer [5].
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The idea of CNNs can be summarized in four steps:

1. Convolution.

2. Subsampling.

3. Activation.

4. Fully connected layer.

6.4.1 Convolution

Convolution layer, the first layer that receives an input data, that consists

learnable filters that try to label the input signal by referrence to what it has

learned in the previous iterations. These filters are activating when they can

recognise a specific, repetitive structure, which they had been able to seen

before [5].

Figure 6.4: Neurons of a convolution layer [7].
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6.4.2 Subsampling

The subsampling or smoothering process is the part of building a convolution

network where the inputs can process convoluted data to reduce the sensi-

tivity of the earlier used filters to all kinds of noises and variations. This

process can be achieved by using averages or the maximum over a sample

of the data. Examples methods: reducing the size of the image, reducing

a resolution of the image, reducing the color contrast across RGB channels

and other data processing methods [5].

6.4.3 Activation

Activation function controls how the signal flows between layers by using

activatin fuctions [5].

6.4.4 Fully connected layer

The fully connected layer is he last layers in the network. It ensures that all

neurons of preceding and subsequent layers are fully connected to each other

[5].

6.5 CNNs Architecture

The simplest architecture of a CNN has an input layer (for example a set

of images) which is followed by followed by convolutional (with layer of ac-

tivation functions) and pooling layers; and the sequence ends with fully-

connected layers.

The early stages of the sequence recognizes generic patterns, while later

layers are responsible for detection of more detalic patterns [5].
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Figure 6.5: Example of a CNN architecture [7].

Figure 6.6: The LeNet: the most popular implementation of the CNN [7].
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7
Solution and Results

In this section we will investigate the whole process of building suitable deep

learning method which will be used for morphological classification of galax-

ies. The whole chapter explains the basic introduction to organization and

preparation of data resources and construction of a neural network.

7.1 Data preprocessing

The provided data by the Galaxy Zoo was a set of 141 553 JPG images of

galaxies (61 578 for a training process and 79 975 for a test process) and a

CSV file which contained probability distributions for the classifications for

each of the training images gained through on-line stage of the classification

process. Each probability distributions are based on the answers provided by

the volunteers and describe the likelihood of the galaxy falling in a specific

morphological category (see the Galaxy Zoo decision tree - chapter 5.2.1)

[10].
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Figure 7.1: Example images provided by the Galaxy Zoo.

7.1.1 Selection of the proper images

The first stage was to choose appropriate images and put them to corre-

sponding directories.

To simplify the approch of galaxy classification only photos of probabil-

ities higher than 0.7 were used and by that over 6 000 images was selected

in each cattegory in both training and test sets - about 70% of volunteers

decided that a image that was shown to them belongs to one of the categories

(such as ellipticals or spirals).

Next step was to move chosen images to adequate catalogues by dividing

them into two seperate classes. Training and validation sets of the images

was arranged into independent places:
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Figure 7.2: Structure of the catalogues after location proces of images of the
galaxies.

7.1.2 Cropping of the images

The data consisted of colour (three color RGB channels) JPG images in

resolution of 424 x 424. Almost all images contains galaxies at the center - the

void of space outside the centers is not needed for the purpose of recognition

of the morphologies - Thus the images was cropped at the center using 256

x 256 windows.

In order to shorten the time of the calculations the images was also resized

to 128 x 128 resolution.
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Figure 7.3: Comparission of the original and changed image.

7.2 Software and hardware

The galaxy classifier was implemented by using Python programming lan-

guage and Keras library (with TensorFlow backend).

The networks were trained on Amazon Web Services (AWS) instance with

Nvidia Tesla K80 GPU (4992 Nvidia CUDA processing units) and traditional

workstation with Nvidia GeForce GTX 950M (640 Nvidia CUDA processing

units).

7.3 Network architecture

For the purpose of ths thesis was adopted an ConvNet architecture called

VGG16 [47] - a very deep neural network architecture that have 16 weight

layers.

The VGG16 model was created in 2014 by Karen Simonyan and Andrew

Zisserman during their work on ImageNet Challenge 2014 Contest [15]. They

proved that CNNs with 16 (or more) deep layers are more than appropriate
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for image classification tasks.

Since then many researchers have tested this approach what has contributed

to drastic improvements in the field of computer vision and thanks to that

now we can use many pre-trained models to improve newly created algo-

tithms.

7.3.1 Pre-trained model

Instead of creating from scratch a completely new architecture we can use

a more sophisticated approach - we can use model already pre-trained on

a large dataset. Such model would have already learned and recognized

features that are useful for most classifications problems, and using these

features would let us to reach a better precision than any other method that

purely relys only on the accessible data [47].

The VGG16 architecture is perfectly suited to this kind of tasks. It is

model that was pre-trained on the ImageNet dataset, dataset that contains

more than 1 000 classes of images - this model already have implementations

of some image properties that may be relevant to our task [25][26].

Figure 7.4: Visual representation of VGG16 architecture [3].
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7.3.2 Fine-tuning the pre-trained architecture

In order to change the pre-trained network for our purpose, only the convolu-

tional blocks of the model were instantiated without changing their content

- recording the outputs from single run of the the model trained on our

datasets. The important part of this step is to read the outputs only from

the he last activation layer (the ”bottleneck features”) not from the fully-

connected one. Only after that we can train fully-connected model on top of

the outputs obtained in the previous step.

To improve our results, we can try to change the last convolutional block

(Conv block 5) and the first layer of classifier block. We will start from

a trained network, then re-training it by slightly changing weight numbers

which are provided with VGG16 model , but the activation function (in this

case ReLU - chapter 6.3) needs to remain unchanged [19][3].

The fine-tuning process can be achive in three steps:

1. Initiation of the base VGG16 model, with its weights.

2. Adding our trained model on top of the VGG16 (with exclusion of last

block of layers).

3. Changing only the blocks after the ”bottleneck features”.

Figure 7.5: Visual representation of VGG16 fine-tunned architecture [3].

41



Chapter 7. Solution and Results

7.4 Training and results

Before we can go to the results one more concept needs to be explained - the

concept of epochs. In process of training deep neural networks, one epoch

means one pass of the training algorithm whrough the full training set. Usu-

ally it may contain a few iterations. The training algotirhm does not just go

through a set once. Such process can even take thousands of iterations in

order to obtain satisfactory results [37].

This approach of using pre-trained neural network model gets us to a

validation accuracy of 0.86 after 200 epochs and the whole training process

took about 6 hours, taking into account the fact that each training sets

contained over 6 000 dark and fuzzy images. For comparison, three years

ago state of the art in image classifications algorithms was 80% [16] and

todays models can achive accuracy of over 90% [19].

The best way to visualize the performance of the algorithm is confusion

matrix (error matrix). The confusion matrix presents how well an algorithm

worked on validation part of the images [27].

Figure 7.6: The confusion matrix for the image classifier.
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Figure 7.7: Chart that illustrate increasing accuracy of the model.

Figure 7.8: Comparative table which presents the results of the galaxy clas-
sifier in comparision to other visual recognision works [8].
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8
Conclusions

On the pages of this thesis the author clarified the analogy between Artificial

Neural Networks and the human brain, described and introduced basic theory

behind Galaxy Morphological Classification system as well as the methods

of Artificial Intelligence and their influence the lives of each of us.

Deep Learning Algorithms and especially Convolutional Neural Network

many times have demonstrated their outstanding capabilities in many areas

of life and yet again, the metods have proven their worth in such difficult field

that is Morphological Classification of Galaxies. The success rate of 86% on

the testing dataset of more than few thousands images of galaxies speaks

by itself and shows that it is possible to develop an efficient neural network-

based algorithms capable of reliable object type classification based on data

delivered by The Galaxy Zoo Project. If the future appears more detailed

images of the sky it will be possible to improve accuracy and predictions

rates of Machine Learning methods used in astronomical studies.
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9
Source code

This chapter contains basic CovNet elements written in Python, along with

comments and concise explanations, which was used for the purpose of this

thesis.

Importing basic libraries and dependencies:

import classes

import models

from keras.preprocessing.image import ImageDataGenerator

from models.Base import CropScaleImageTransformer

from keras import optimizers

from keras.preprocessing.image import array_to_img,

from keras.preprocessing.image import ImageDataGenerator

from keras.preprocessing.image import img_to_array

from keras.preprocessing.image import load_img

from keras import applications

from vgg16 import VGG16

from keras.models import Sequential

from keras.layers import Dropout

from keras.layers import Flatte

from keras.layers import Dense

import time

import csv
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import numpy as np

Function that crops and rescale images:

def get_images(c=256, s=128):

"""

Crop: 256x256

Rescale: 128x128

"""

cs = CropScaleImageTransformer(training=True,

result_path=’data/img_end.npy’

.format(crop, s),

crop_size=c,

scaled_size=s,

memmap=True

n_jobs=-1,

)

imag = cs.transform()

return imag

Importing VGG16 architecture and weights [25][26] of the top layers, as

well as setting up directories and numbers of training images:

weights_vgg = ’../vgg16_weights.h5’

top_model_vgg = ’fc_model.h5’

# resolutions of the images:

img_width = 150

img_height = 150
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train__dir = ’galaxy/train’

test__dir = ’galaxy/test’

train_samples = 6125

test_samples = 6075

epochs = 2000

batch_number = 1000

Initiating the VGG16 architecture:

model = applications.VGG16(weights=’imagenet’, include_top=False)

Initiating a classifier layers - the layers on top of the convolutional model:

classr = Sequential()

classr.add(Flatten(input_shape=model.output_shape[1:]))

"""

Using the ReLU activation function

"""

classr.add(Dense(256, activation=’relu’))

classr.add(Dropout(0.5))

classr.add(Dense(1, activation=’relu’))

classr.load_weights(top_model_vgg)

Adding the the convolutional layers on top of the rest layers:

model.add(classr)

Blocking (freezing) the first layers and compiling the current model:

for layer in model.layers[:15]:

layer.trainable = False
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# setting slow learing speed:

model.compile(loss=’binary_crossentropy’,

optimizer=optimizers.SGD(lr=1e-3, momentum=0.5),

metrics=[’accuracy’])

Fine-tuning the pre-trained model:

model.fit_generator(

t_generator,

samples_per_epoch=train_samples,

epochs=epochs,

validation_data=validation_gen,

nb_val_samples=test_samples)

Data augmentation and preparation, testing results:

train_data = ImageDataGenerator(

rescale= 1./255,

shear_range=0.3,

zoom_range=0.3,

horizontal_flip=False)

test_data = ImageDataGenerator(rescale= 1./255)

Data validation:

test_gen = train_datagen.flow_from_directory(

train_dir,

target_size=(img_height, img_width),

batch_size=batch_size,
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class_mode=’binary’)

validation_gen = test_datagen.flow_from_directory(

test__dir,

target_size=(img_height, img_width),

batch_size=batch_number,

class_mode=’binary’)
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