Markdown
Converter

Author
Mehmet Fatih SARAC

A terminal-based Markdown (.md) to HTML (.html) / text file (.txt) /
string (str) converter which handles paragraphs, headings (hl to h6),
bold, italic and strikethrough texts, links, images, unordered lists!!]
and codes. The project is based on GitHub Markdown, but it can
convert any relatively simple Markdown to HTML.

Introduction
Aim
The aim of this project is to convert the Markdown markup language,
which is frequently used especially when writing the documentation

of a tool, into raw HTML and then output it as different file types
(html, txt or str) according to the user's request.

Scope

In this project, the user gives a Markdown file to the program. The
program first converts this file into raw HTML. After this process,
depending on the output type requested by the user, the program prints
this raw HTML as that file.

Methodology

In this project I mostly utilized "functional programming", which is a
declarative programming paradigm style. I used regular expressions
(also known as regex), a very powerful tool to convert Markdown
lines into HTML blocks. I also used Python's built-in "argparse"
library to give the user a little more flexibility in the terminal.

[11: Converting unordered lists has some issues. Converter adds <11i>
tags but does not add tag at the start and end of list items. Thus,
the list 1s displayed without indentation from right side.

https://www.youtube.com/watch?v=dQw4w9WgXcQ

Theoretical Part

To convert the Markdown file into raw HTML, we first need to
understand the Markdown syntax and then know the HTML
equivalent of each Markdown mark.

Headers: # for <h1>, ## for <h2>, etc.

[talic: *italic* or italic for

Bold: **bold** or bold for .

Strikethrough: ~~strikethrough~~ for <s>

Links: [link](http://url) for link
Images: ![alt text](url) for
Unordered lists: -, * or + for <Ii>

Code: "code’ for <code>

After this conversion, we need to print the raw HTML we obtain as a
file type according to the user's request. For this, we need to be able to
open and write files.

Practical Part

The main part of the project is shown below:

convert_to_raw_html(content):

content = re.sub((. \-+\n].*)$", , content,
flags=re.MULTILINE)

content = re.sub(

(#{1,6}) +(.*)$",
m: f"<h{len(m.group(1))}>{m.group(2)}</h{len(m.group(1))}>",
content,
flags=re.MULTILINE

content = re.sub(

*{2}([**]+)*{2}", , content,

flags=re.MULTILINE

)

content = re.sub(([~ 1+)_(2: |\n)", , content,
flags=re.MULTILINE)

content = re.sub({2}([*~]+)~{2}", , content,
flags=re.MULTILINE)

content = re.sub(
\LCIANTTONINCC+2(2=\))N,
content,
flags=re.MULTILINE,

content = re.sub(
\LCINNTTPONINCC+2(2=\)\n))\) ",
content,
flags=re.MULTILINE,

content = re.sub((- *¥|\+) (.%)$", , content,
flags=re.MULTILINE)

content = re.sub(([~14) ", , content,
flags=re.MULTILINE)

return content

The above code basically does the job of converting the Markdown
string into raw HTML string, which I explained in the theoretical part.

One of the shortcomings of the project that is difficult to understand is
that it does not add tags when converting the unordered list.
However, I couldn't find how to do this easily.

Another shortcoming of the project is that it is not a full-fledged
Markdown converter.

Summary

In summary coding a Markdown converter using regular expressions
(regex) was a little more difficult than I expected. This version of the
project has a few “minor” bugs and many shortcomings. |
implemented the most used functions in Markdown in this project, but
if you want to use a real Markdown converter in a real project I
recommend using the python-markdown?2 library instead of mine.

https://github.com/trentm/python-markdown2

