POLITECHNIKA KRAKOWSKA

Python Programming Project

Ana Margarida de Freitas

Helin Salduz
Sude Yilmaz

PIK

ERASMUS+

Supervisor: Radostaw Kycia

June 12, 2024

June 12, 2024

Python Programming Project

Ana Margarida de Freitas

Helin Salduz
Sude Yilmaz

ERASMUS+

Abstract

This project tasks the group with several objectives related to the development of a chat-
based decision tree game developed with python, aimed at providing an engaging and in-
teractive experience for the user. The game employs a simple text-based interface where
players navigate through a series of decisions, similar to a choose-your-own-adventure
story. By interacting with the game through text input, players are introduced to funda-
mental programming concepts such as conditional statements, user input handling, and
basic game logic.

The core of the game lies in its decision tree structure, where each player choice
leads to different outcome, creating a branching narrative. Through this structure, players
gain hands-on experience with flow control mechanisms, understanding how different
decisions influence the progression of the game. Additionally, the game fosters problem-
solving skills as players assess the consequences of their choices and adapt their strategy
accordingly.

Furthermore, the game can be easily extended and customized to cover a wide range
of topics, from basic syntax and control structures to more advanced programming prin-
ciples.

Keywords: Python, programming, game, chat

Contents

1 Introduction
2 Theorical Part
3 Practical part

4 Summary

11

15

Chapter 1
Introduction

Within the context of the Pyton Programming course, there was a proposal to develop
any functional program using the language mentioned above. This report will detail the
journey and outcomes of this hands-on experience, accompanied by visual documentation
of the results. Throughout the report, we will reference the task made and the obtained

results.

The core aim of the project is to showcase the immersive experience of an Erasmus
student in Krakow. Through the journey, our Erasmus students will explore the intricacies

of the city, the new lifestyle and the discovery process of living abroad.

Our project encompasses the development of a chat-based decision tree game that
transports players into the shoes of an Erasmus student newly arrived in Krakow. Within
this digital realm, players will navigate through a series of decisions mirroring real-life

scenarios encountered by Erasmus students.
As for the methodology used, it’s the following:

* Conceptualization:
We begin by conceptualizing the game design, crafting a storyline that encapsulates
the Erasmus experience in Krakow, and mapping out the decision tree structure.

* Development:

Leveraging the versatility of Python, we embark on the development phase, focus-
ing on implementing the chat-based interface, decision tree logic, and gameplay

mechanics.

Introduction

* Testing and Iteration:

Rigorous testing ensues, aimed at identifying and rectifying any glitches or incon-
sistencies. Feedback from testers will inform iterative improvements to refine the

game’s design and functionality.

¢ Documentation:

We compile comprehensive documentation detailing the project’s design, imple-
mentation intricacies, and user instructions to facilitate seamless integration into

Python programming classes.

¢ Presentation:

The final project is presented in Python programming class, showcasing its immer-

sive gameplay.

Chapter 2
Theorical Part

In order to fulfill the necessities of our project, it was a deal breaker access to the libraries
and technologies of Python language. This section describes the two main theoretical

aspects of this program.

* Graphical User Interface (GUI) Design

From the research made, it was concluded that it’s common in this type of program
to rely on events to trigger functions. The tkinter library handles these events, like

buttons, with callback functions assigned to widgets.

Images are loaded and manipulated for display within the application. While resiz-

ing images, it is important to maintain the aspect ratios to avoid distortion.

* Game Design Concepts

A sequence of narrative steps, each represented by a different GUI update, is en-
countered as the game advances. To help the player go through the narrative, text

and graphics are updated.

The player is presented with numerous options throughout the game, and each one
can lead to a different path or result. The story is advanced through button clicks,

making for an interactive experience.

The game employs timed delays (a technique from tkinter) to regulate the story’s
progression, introducing dramatic pauses to create impact and directing the player’s

speed.

Theorical Part

Chapter 3
Practical part

It starts with the importing and initial setup. It creates the main window, sets the title, the

dimensions, and initializes the GUI components.

I import tkinter as tk

5

3 class GameApp:
4 def _ _init_ (self, master):
5 self.master = master

6 master.title ("Krakow Chronicles")

8 master.geometry ("800x600")
9 master.minsize (600, 400)

10 master.resizable (True, True)

12 self.title_font = ("Helvetica", 15, "bold")
13 self.custom_font = ("Helvetica", 10, "bold")
14 self.button_font = ("Helvetica", 8)

16 master.configure (bg="#£f0£0£0")

18 self.label = tk.Label (master, text="Welcome to Krakow Chronicles!",
font=self.title_font, bg=’#f0f0f0")
19 self.label.pack (pady=10)

21 self.image_label = tk.Label (master, bg="#f0£f0£f0")
2 self.image_label.pack ()

24 self.button = tk.Button (master, text="Start", command=self.
start_game, font=self.custom_font, bg=’#4CAF50’,
25 fg="white’, padx=10, pady=5)

S}

6

6 Practical part

self.button.pack (pady=10)

master.bind (’ <Return>’, self.next_text)

Then the goal is to load and resize the images. The images are loaded from the files
and resized using the resize_image method. However, if it’s not possible to load an image
the program interprets it as an error. While resizing, the aspect ratios were maintained.
The exit button to leave the game is also incorporated, so the user can finish the game at

any time.

try:
self.images = {

"welcome": self.resize_image (tk.PhotoImage (file="
welcome_image.png"), 400, 100),

"square": self.resize_image (tk.PhotoImage (file="
square_image.png"), 400, 100),

"basilica": self.resize_image (tk.PhotoImage (file="
basilica_image.png"), 400, 100),

"cloth_hall": self.resize_image (tk.PhotoImage (file="
cloth_hall_image.png"), 400, 100),

"Jazz_club": self.resize_image (tk.PhotoImage (file="
jazz_club_image.png"), 400, 100),

"night_market": self.resize_image (tk.PhotoImage (file="
night_market_image.png"), 400, 100),

"performers_image": self.resize_image (tk.PhotoImage (file="
performers_image.png"), 400, 100),

"castle": self.resize_image (tk.PhotoImage (file="

castle_image.png"), 400, 100),

"museum": self.resize_image (tk.PhotoImage (file="
museum_image.png"), 400, 100),

"cafe": self.resize_image (tk.PhotoImage (file="cafe_image.
png"), 400, 100),

"nightlife image": self.resize_image (tk.PhotoImage (file="

nightlife_image.png"), 400, 100),
"nightclub": self.resize_image (tk.PhotoImage (file="
nightclub_image.png"), 400, 100),
}
print ("Images loaded successfully.")
except Exception as e:
print ("Error loading images:", e)
self.label.config(text=f"Error loading images: {e}")

return

Practical part

self.text_queue = []

self.next_action = None

self.option_buttons = []

self.canvas = tk.Canvas (master, width=50, height=50, bg="#f0£f0£f0’,
highlightthickness=0)

self.canvas.pack (side=tk.RIGHT, padx=10, pady=10)

self.draw_exit_button ()

def draw_exit_button(self) :
self.canvas.create_oval (5, 5, 45, 45, fill="red", outline="black")
self.canvas.create_text (25, 25, text="X", fill="white", font=("

Helvetica", 12, "bold"))

self.canvas.bind ("<Button-1>", self.exit_game)

def exit_game (self, event):

self.master.destroy ()

def resize_image(self, image, width, height):
original_width = image.width ()

original_height = image.height ()

aspect_ratio = original width / original_height
if aspect_ratio > 1:

new_width = width

new_height = round(new_width / aspect_ratio)

else:

new_height height

new_width = round(new_height x aspect_ratio)

return image.subsample (round(original_width / new_width), round(

original_height / new_height))

S}

The start_game method initializes the game by updating the interface with a welcome
image, queuing some introductory text messages, and preparing a button labeled "Ex-
plore Krakow" that, when clicked, will trigger further game actions related to exploring
Krakow. This method sets up the initial state and user interface for a player beginning

their adventure in the game.

def start_game (self) :

self.update_image ("welcome")

w

6

Practical part

self.queue_texts(["You are an Erasmus student arriving in Krakow,

ready for adventure.",

"Your goal is to explore the city and immerse

yourself in its culture.",

"Let’s begin!"])

self.next_action = lambda: self.update_button ("Explore Krakow",

self.explore_krakow)

Krakow Chronicles - ul X

You are an Erasmus student arriving in Krakow, ready for adventure.

Figure 3.1: Welcome menu

These methods manage displaying text messages, updating button labels and actions,

and changing images. The queue_texts method initializes a queue of texts and starts

displaying them one by one. The next_text method displays the next text in the queue

or executes a next action if the queue is empty. The update_button method changes the

button text and action, while the update_image method updates the displayed image based

on a given key.

def

def

def

queue_texts (self, texts):
self.text_queue = texts

self.next_text (None)

next_text (self, event):
if self.text_qgueue:
self.label.config(text=self.text_queue.pop (0))
elif self.next_action:
self.next_action ()

self.next_action = None

update_button (self, text, command) :

self.button.config(text=text, command=command)

Practical part

def update_image (self, image_key) :
print (f"Updating image: {image_key}")

if image_key in self.images:

self.image_label.config(image=self.images[image_key])

self.image_label.image = self.images[image_key]

else:

print (f"Image key {image_key} not found in images.")

So it jumps to the actual game, it calls the clear_buttons to remove any existing

buttons. Then updates the image to the main square of Krakow with the function up-
date_image. Queues the text describing the main square and nearby locations and finishes

by presenting the options to the player.

1

IS

10

def explore_krakow(self) :
self.clear_buttons ()

self.update_image ("square")

self.queue_texts (["\nYou are in the main square of Krakow.",

"To your left, you see the majestic St. Mary’s

Basilica.",

"To your right, there’s the historic Cloth Hall."

"Straight ahead, you see bustling streets with

nightlife options.",

"Where would you like to go?"])

self.next_action = self.show_day_options

Similarly to the previous part, the buttons are cleared and the new options, for the day

activities show up.

def clear_buttons(self):
for button in self.option_buttons:
button.destroy ()
self.option_buttons = []

def show_day_options (self):

self.clear_ buttons()

self.buttonl = tk.Button(self.master, text="St.

command=self.visit_st_marys, bg=’#008CRBA’,

Mary’s Basilica",

fg="white’, font=self.button_font, padx=5,

pady=3)

10

Krakow Chronicles — m| b4

Where would you like to go?

Explore Krakow

St Mary's Basiica

Cloth Hall
o

el
Cafe

Explore Hightiife

Figure 3.2: Exploring Krakow options

self.buttonl.pack (pady=5)
self.option_buttons.append(self.buttonl)

Practical part

self.button2 = tk.Button(self.master, text="Cloth Hall", command=

self.visit_cloth_hall, bg=’#008CBA’,

fg="white’, font=self.button_font, padx=5,

pady=3)
self.button2.pack (pady=5)
self.option_buttons.append(self.button2)

self.button3 = tk.Button(self.master, text="Castle",
visit_castle, bg=’#008CBA’, fg='white’,

command=self.

font=self.button_font, padx=5, pady=3)

self.button3.pack (pady=5)
self.option_buttons.append(self.button3)

self.buttond4 = tk.Button(self.master, text="Museum",

visit_museum, bg=’#008CBA’, fg='white’,

command=self.

font=self.button_font, padx=5, pady=3)

self.button4.pack (pady=5)
self.option_buttons.append(self.button4)

self.buttonb = tk.Button(self.master, text="Cafe", command=self.

visit_cafe, bg=’#008CBA’, fg='white’,

font=self.button_font, padx=5, pady=3)

self.button5.pack (pady=5)
self.option_buttons.append(self.buttonb)

36

37

o

Practical part 11

self.button6 = tk.Button(self.master, text="Explore Nightlife",
command=self.explore_nightlife, bg=’#FFD700’,
fg="black’, font=self.button_font, padx=5,
pady=3)
self.button6.pack (pady=5)
self.option_buttons.append(self.buttono6)

With the same logic as before, it is defined the functions for each activity in the fol-

lowing way:

def visit_st_marys(self):
self.clear_buttons ()
self.update_image ("basilica")
self.queue_texts (["\nYou enter St. Mary’s Basilica and are
awestruck by its beauty.",
"You spend some time admiring the intricate
details of the altar.",
"As you leave, you notice a group of street
performers outside.",
"Would you like to watch their performance?"])
self.next_action = lambda: self.update_button ("Watch Performance",

self.watch_performance)

For the rest of the program it is used the same logic of the other components. It is also

defined the night activities.

def watch_performance (self):
self.clear_buttons ()
self.update_image ("performers_image")
self.queue_texts (["\nYou join the crowd and watch the street
performers.",
"Their music and acrobatics captivate you, and
you find yourself smiling.",
"After the performance, you feel energized and
ready for more adventures."])
self.next_action = lambda: self.update_button ("Explore More", self.

explore_krakow)

def visit_cloth_hall (self):
self.clear_buttons()

self.update_image ("cloth_hall")

Practical part

self.queue_texts (["\nYou enter the Cloth Hall and browse through
various stalls selling souvenirs.",
"You buy a beautiful handmade ornament as a
keepsake.",
"Would you like to explore more of the city?"])
self.next_action = lambda: self.update_button ("Explore More", self.

explore_krakow)

def explore_nightlife(self):
self.clear_buttons ()
self.update_image ("nightlife_image")
self.queue_texts (["\nYou decide to explore Krakow’s vibrant
nightlife.",
"You can choose to visit a jazz club, a night
market, or a popular nightclub.",
"Where would you like to go?"])

self.next_action = self.show_nightlife_ options

def show_nightlife_options(self):

self.clear_buttons ()

self.buttonl = tk.Button(self.master, text="Jazz Club", command=
self.visit_jazz_club, bg=’#FFD700’, fg='"black’,
font=self.button_font, padx=5, pady=3)
self.buttonl.pack (pady=5)
self.option_buttons.append(self.buttonl)

self.button2 = tk.Button(self.master, text="Night Market", command=
self.visit_night_market, bg=’#FFD700’,
fg="black’, font=self.button_font, padx=5,
pady=3)
self.button2.pack (pady=5)
self.option_buttons.append(self.button2)

self.button3 = tk.Button(self.master, text="Nightclub", command=
self.visit_nightclub, bg=’#FFD700’, fg='black’,
font=self.button_font, padx=5, pady=3)
self.button3.pack (pady=5)
self.option_buttons.append(self.button3)

self.buttond4 = tk.Button(self.master, text="Back to Daylight",
command=self.back_to_daylight, bg=’#FFD700’, fg="black’,
font=self.button_font, padx=5, pady=3)
self.button4.pack (pady=5)

Practical part 13

46 self.option_buttons.append(self.button4)

48 def back_to_daylight (self) :

49 self.clear_buttons ()

50 self.explore_krakow ()

51

52 def visit_jazz_club(self):

53 self.clear_buttons ()

54 self.update_image ("jazz_club")

55 self.queue_texts (["\nYou enter a cozy jazz club and enjoy a night

of smooth jazz music.",

56 "The atmosphere is relaxed and you feel at ease."
’

57 "Would you like to explore more of Krakow’s
nightlife?"])

58 self.next_action = lambda: self.update_button ("Explore More", self.

explore_nightlife)

60 def visit_night_market (self) :

61 self.clear_buttons ()

62 self.update_image ("night_market")

63 self.queue_texts (["\nYou wander through a bustling night market
filled with food stalls and handmade crafts.",

64 "You taste some delicious local delicacies and
buy a unique souvenir.",

65 "Would you like to explore more of Krakow’s
nightlife?"])

66 self.next_action = lambda: self.update_button ("Explore More", self.
explore_nightlife)

67

68 def visit_castle(self):

69 self.clear_buttons ()

70 self.update_image ("castle")

71 self.queue_texts (["\nYou arrive at the historic Wawel Castle and
join a guided tour.",

72 "The guide tells you fascinating stories about
the castle’s history.",

73 "Would you like to explore more of the city?"])

74 self.next_action = lambda: self.update_button ("Explore More", self.
explore_krakow)

75

76 def visit_museum(self) :

77 self.clear_buttons ()

78 self.update_image ("museum")

14 Practical part

79 self.queue_texts (["\nYou visit the National Museum and explore
various exhibits showcasing Polish art and culture.",

80 "You spend hours admiring the artworks and
learning about the history.",

81 "Would you like to explore more of the city?"])

82 self.next_action = lambda: self.update_button ("Explore More", self.
explore_krakow)

83

84 def visit_cafe(self):

85 self.clear_buttons ()

86 self.update_image ("cafe")

87 self.queue_texts (["\nYou enter a charming cafe and enjoy a cup of

coffee and a delicious pastry.",

88 "You relax and soak in the atmosphere, feeling
refreshed.",

89 "Would you like to explore more of Krakow’s
nightlife?"])

90 self.next_action = lambda: self.update_button("Explore More", self.
explore_nightlife)

91

92 def visit_nightclub (self) :

93 self.clear_buttons ()

94 self.update_image ("nightclub")

95 self.queue_texts (["\nYou head to a popular nightclub and dance the

night away.",
96 "The music is loud and the energy is high, making
it an unforgettable experience.",
97 "Would you like to explore more of Krakow’s
nightlife?"])
98 self.next_action = lambda: self.update_button ("Explore More", self.

explore_nightlife)

100 root = tk.Tk ()
101 app = GameApp (root)

12 root.mainloop ()

Chapter 4
Summary

This project entails developing a chat-based decision tree game using Python to provide
an engaging and interactive experience for users. The game employs a simple text-based
interface where players make decisions akin to a choose-your-own-adventure story, aim-
ing to introduce fundamental programming concepts such as conditional statements, user
input handling, and basic game logic.

The main objective is to create an immersive experience for an Erasmus student in
Krakow, guiding them through various real-life scenarios and decisions they might face.
The game structure uses a decision tree, allowing each choice to lead to different outcomes
and creating a branching narrative that helps players understand flow control mechanisms
and the impact of their decisions.

For this to be possible it was crucial the content learnt in Python Programming classes.
The group values this project for the way it was possible to incorporate the reality lived
into a fun approach.

For future steps, it would be incorporated a larger network of questions or even imple-
ment machine learning, so that the user could provide their own answers. Then a testing
period, so that the users could report the relevance of the questions and also provide new
ideas to be included.

Therefore, it could have some social impact in organizations like ESN since they could

provide this app to their new income students, for them to get to know the city.

15

	Front Page
	Table of Contents
	1 Introduction
	2 Theorical Part
	3 Practical part
	4 Summary

