
Natural Language Processing

Spell Corrector Project

Marius MaŌeuta
Berkay URAS
Sude YILMAZ

Abstract

This project explores the development of a spell corrector using mulƟple approaches, including
SymSpell, SpellChecker, contextual correcƟon with spaCy and by using a text file as a train data for
the correcƟon. The project aims to create an efficient spell correcƟon tool and evaluate its
effecƟveness. A graphical user interface (GUI) is also developed to provide an interacƟve plaƞorm
for users.

2. IntroducƟon

2.1 Aim

The aim of this project is to develop a spell correcƟon tool that can effecƟvely idenƟfy and correct
misspellings in English text using different methodologies. The tool should be user-friendly and
accurate, providing an intuiƟve interface for users to input text and receive corrected versions.

2.2 Scope

The project covers the implementaƟon and comparison of three different spell correcƟon
techniques:

- SymSpell-based correcƟon
- SpellChecker library-based correcƟon
- Contextual spell correcƟon using spaCy

AddiƟonally, the project includes the development of a GUI to facilitate easy interacƟon with the
spell correcƟon tool. The scope also involves loading dicƟonaries, handling user input, displaying
correcƟons, and maintaining a history of corrected text.

2.3 Methodology

The methodologies used in this project include:

 ImplementaƟon of NLP techniques by using Shakespeare’s Works as a train data for the
corrector.

 SymSpell: A fast and efficient spell correcƟon algorithm that uses a precomputed
dicƟonary and offers suggesƟons based on edit distances.

 SpellChecker: A library that uses a simple yet effecƟve approach to spell correcƟon by
leveraging word frequency and edit distance.

 SpaCy with contextualSpellCheck: UƟlizes the spaCy NLP framework combined with
contextualSpellCheck to provide context-aware spell correcƟon.

The project was developed using Python through JupyterNotebook by using different libraries like
tkinter for GUI development, symspellpy, spellchecker, and spacy libraries for spell correcƟon
algorithms.

I. TheoreƟcal Part

3. Theory

The spell correcƟon problem can be approached through various methodologies, each with its
advantages and limitaƟons:

NLP Techniques

Using raw NLP techniques involves creaƟng a custom dataset from Shakespeare's works. It involves
generaƟng a vocabulary set, calculaƟng word frequencies, and developing funcƟons to create
potenƟal word edits. This method applies techniques like deleƟon, inserƟon, replacement, and
switching of leƩers to suggest correcƟons.

SymSpell

SymSpell uses a precomputed dicƟonary of known words and their frequencies, employing edit
distance algorithms to find the closest match to a given misspelled word. This compact dicƟonary
allows for fast lookup, making SymSpell suitable for real-Ɵme applicaƟons.

SpellChecker

This library uses a frequency-based approach to suggest correcƟons, relying on the assumpƟon that
more common words are more likely to be the intended correct form. SpellChecker also uses edit
distance to generate possible correcƟons.

Contextual CorrecƟon with SpaCy

SpaCy is a powerful NLP framework that supports various language processing tasks. By integraƟng
contextualSpellCheck, SpaCy can correct misspellings based on the context in which they appear.
This approach goes beyond simple edit distance and frequency, considering the semanƟc context of
words.

II. PracƟcal Part

4. ImplementaƟon and Resultsù

The pracƟcal implementaƟon of the spell correcƟon project involved developing and integraƟng
mulƟple correcƟon methodologies and creaƟng a user-friendly graphical user interface (GUI). This
secƟon details the specific methods used, the implementaƟon process, and the results obtained.

NLP Techniques Using Shakespeare's Works

NLP techniques were applied to develop a spell corrector using a dataset of Shakespeare's works.
The following steps outline the process:

 Dataset PreparaƟon: Shakespeare's works were loaded and preprocessed to create a list of
words in lowercase, forming the vocabulary.

 Word Frequency CalculaƟon: A word frequency dicƟonary was created to calculate the
probability of each word based on its frequency in the dataset.

 Edit Distance FuncƟons: FuncƟons to generate possible edits of a word (deleƟons, inserƟons,
replacements, and switches) were implemented to propose potenƟal correcƟons.

 Spelling SuggesƟons: The funcƟon get_spelling_suggesƟons was used to generate and rank
possible correcƟons based on word probabiliƟes and edit distances.

SymSpell ImplementaƟon

The correct_spellings_symspell funcƟon iniƟalizes the SymSpell object, loads the dicƟonary, and
processes user input to provide correcƟons. Example usage demonstrates correcƟng phrases by
suggesƟng the most likely correct forms based on the dicƟonary.

SymSpell is known for its fast and memory-efficient spell correcƟon capabiliƟes. Here's how it was
implemented:

 IniƟalizaƟon and Setup: The SymSpell object is iniƟalized with parameters like maximum edit
distance and prefix length, which influence the correcƟon process.

 Loading the DicƟonary: A precompiled dicƟonary of words
(frequency_dicƟonary_en_82_765.txt) is loaded into the SymSpell object. This dicƟonary
contains words and their frequency counts, which help in determining the most likely
correcƟons.

 CorrecƟon Process: The lookup_compound funcƟon of SymSpell is used to suggest
correcƟons. This funcƟon considers the enƟre input text and provides a corrected version
based on the dicƟonary and edit distance.

SpellChecker ImplementaƟon

The correct_spellings_spellchecker funcƟon iniƟalizes the SpellChecker object, processes user input,
and outputs corrected text. It also includes funcƟonality to handle special commands like clearing
history.

 IniƟalizaƟon: The SpellChecker object is created, which includes a default dicƟonary of
English words.

 CorrecƟon Process: For each word in the input text, the correcƟon funcƟon of
SpellChecker is called to find the most likely correct word based on frequency and edit
distance.

Contextual CorrecƟon with SpaCy

The project incorporates a model from spaCy, enhancing it with contextualSpellCheck for context-
aware correcƟons. Example usage highlights how the model idenƟfies and corrects misspellings
within the context of a sentence.

SpaCy, a powerful NLP framework, combined with contextualSpellCheck, provides context-aware
correcƟons that consider the surrounding words in the text:

 Model Setup: The spaCy model (en_core_web_sm) is loaded, and contextualSpellCheck is
added to its pipeline. This enhances the model's ability to idenƟfy and correct misspellings
within the context of a sentence.

 CorrecƟon Process: Input text is processed by the spaCy model, which generates suggesƟons
and correcƟons considering the context. The suggesƟons_spellCheck aƩribute provides
details of the correcƟons made, while outcome_spellCheck gives the final corrected text.

 Example Usage: The code demonstrates the usage of spaCy for contextual correcƟons,
highlighƟng how it corrects phrases and maintains the intended meaning of sentences.

GUI Development

The GUI, built with tkinter, provides an interacƟve plaƞorm for users to enter text and receive
corrected output. It includes input fields, buƩons for triggering correcƟons, and a display area for
correcƟon history.

Summary

The project successfully achieved its goal of developing a versaƟle spell correcƟon tool, with each
implemented method demonstraƟng its strengths. SymSpell offers fast and efficient correcƟons,
while SpellChecker provides a balance of simplicity and effecƟveness. AddiƟonally, SpaCy's
contextual correcƟons enhance accuracy in complex sentences. The GUI improves the tool's
usability, making it accessible and easy to use. Future improvements could involve integraƟng more
advanced NLP techniques and expanding the dicƟonary to cover a wider range of words and
contexts.

BIBLIOGRAPHY

- "symspellpy 6.3.8," PyPI, hƩps://pypi.org/project/symspellpy/6.3.8/.

- "pyspellchecker," PyPI, hƩps://pypi.org/project/pyspellchecker/.

- "Create a Spell Check with NLP," Scaler Topics, hƩps://www.scaler.com/topics/nlp/create-a-spell-
check-with-nlp/.

