Thomas Guegan
Spring 23

Report
Tetris like Game

Abstract

This report presents the process of developing a “Tetris” like game in
python explaining the main steps of the project. It also gives some
possible improvement that could be done to the game to add more
enjoyable possibilities for the player.

Introduction:

The idea of this project was to develop a Tetris like game to assess the
skills learned during Python Programming course and to continue
learning by practicing.

There have been a few steps for this project:

Introduction:
Development:

Definition of necessary class
Generating board and shapes
Creating the Board:
Defining the Shapes:
Creating a New Shape:
Shapes movement and Collisions:
Updating the Current Shape:
Drawing the game board and interface
Counting and storing points

W W WNDNDNDNSLS A

Dealing with user input 4
Bibliography: 4

Development:

Definition of necessary class

Two different classes are used for this project. The first one is the Tetris
class that serves as the central component for managing the game
board and its associated functionalities. It encompasses various key
aspects of the Tetris game, including the creation and maintenance of
the game board itself. Additionally, the Tetris class is responsible for
defining and handling the different Tetris shapes that appear during
gameplay. The shapes are objects of the class Shape. This class is used
to generate a random shape that can be placed on the game board.

Generating board and shapes

Creating the Board:

To create the game board, the createBoard method in the Tetris
class is used. It initializes the board variable as a 2D list with

dimensions defined in the settings dictionary. Each cell on the board

is initially set to O, representing an empty cell. The board serves as a
grid where the Tetris shapes will be displayed during gameplay.

Defining the Shapes:

The Tetris shapes that are available are defined as matrices in the
shapes list. Each shape is represented by a 2D list, where 0 represents
an empty cell and a different number indicates a filled cell. Each type of
shape uses a different number to define a filled cell, this situation was
decided to make it easier to differentiate each shape in the board and to
have a way to easily give the same color to all the shapes of the same

type. These matrices define the initial configuration of each shape on the
board. The shapes can also be rotated to change their orientation during
the game.

Creating a New Shape:

When a new shape is needed, the newShape method is responsible for
generating a random shape. It selects a shape randomly from the
shapes list and sets its initial position at the top center of the board.
Each shape has its own coordinates that can change during the game.
Additionally, the next_shape attribute is updated to indicate the shape

that will appear in the next move. This attribute of the Tetris class will be
used late to draw the preview of the next shape as in the Tetris game.

Shapes movement and Collisions:

As in the Tetris game, every game tick the current shape will drop by one
cell until it can’t due to reaching the end of the board or colliding with an
already fixed cell. The user can also make the cell go on the left or the
right to position the shape to his will. However, collisions have to be
implemented for the game to work correctly. There are two types of
collisions:

o Collision with the board edges, that can be managed using
the length of the piece, the direction it wants to go and its
position. Computing this information allows the game engine
to detect if the shape tries to go out of bounds.

o Collision with a fixed shape, which is managed by looking at
the direction of the shape and if there is at least one free cell
for each “side cell” of the shapes.

The detection of collisions is managed using the check_collision
method. Every time the shape tries to move (game tick or user input) or
to rotate the method checks if the movement can be done and then
allows or rejects it.

Updating the Current Shape:

To update the current shape on the board, the updateCurrentShape

method is used. It uses the lockedboard attribute as a base for the
current state of the game and then positions the current shape on the
grid accordingly. This method is the last method that is called before
dealing with the printing of the game interface.

Drawing the game board and interface

Drawing the game is separated between drawing the board and the
menu of the game. For the board the engine bases the drawing on the
board attribute since it represents the current state of the game. Each
cell is drawn as a square of color, black for an empty cell and a specific
color with white square inside for the cell of a shape. For the menu we
need to print a few things but the idea remains the same. The game
draws the preview of the next shape using the same system as to draw
the board. It also draws the name of the game and the current top 3
high scores. Since the game is updated every tick we render the game
every time (at a 30 fps frequency) to have a fluid looking game.

Counting and storing points

As a scoring system the game uses the basic Tetris scoring system
described in the Tetris wiki.

Every time a shape is fixed due to collisions the engine calls the
clean_lines method that checks if a row of the board is full of shape
cells. If so the row gets destroyed and the upper rows are moved down
by 1. The methods return the number of rows that were destroyed in one
iteration to compute the number of points that the player earned with this
move. At the end of each game the 3 best scores are stored into a file to
let player track his best score of all time.

Dealing with user input

To manage user input inside the game | used the implementation of user
input available in Pygame. The Pygame instance detect every
keyboard/mouse event the user do and we can use this to launch
specific event depending on which key is pressed.

Conclusion:

As a conclusion, we can say that this little project was a success
because | was able to use the knowledge | gained from the course to
build my game. Still it would be possible to improve some features like
the GUI design or the scoring system for the game to be more enjoyable.
We could also create new functionalities like a player versus player
mode using sockets and threads (or asynchronous functions). | didn’t
have time to implement this due to the project deadline and other
projects but that's definitely possible. However in this case | think the
code should be splitted in different modules to keep a better visibility
over all the functionalities. | didn’t do it for this first version as the amount
of code was still acceptable in one file but the architecture using Class
would allow us to split the code.

Bibliography:

https://tetris.wiki/Scoring
https://www.pygame.org/docs/ : Pygame documentation
Inspiration: “quadrapassel” game on Linux Ubuntu

https://tetris.wiki/Scoring
https://www.pygame.org/docs/

