SNAKE GAME REPORT
Ali Benazzouz

1/ Introduction :

The Snake Game is a classic arcade game where the player controls a
snake that grows in length by eating food while avoiding collisions with
the walls of the game window and its own body.

The concept occurred to me while contemplating the possibility of
undertaking a project that would be minimalist in nature but not overly
simple to design.

As an avid enthusiast of retro games like Tetris and Snake, with Tetris
already having been created, Snake was the only option remaining game
that held a special place in my childhood memories.

2/ Game setup and initialization :

I first decided to divide my project into small tasks, each task would lead
to the beginning of the following one.

In the one hand, I focused on creating the actual “map” with the snake at
it’s first form with random food that pops anywhere in the map.

2.1/ Used libraries :

The Snake Game utilizes the Pygame library, which is a popular choice for
developing 2D games in Python.

The game window is initialized with a default size of 640x480 pixels and
a title of "Snake Game." Additionally, essential colors for the game, such
as black, green, red, and white, are defined to be used in various elements
of the game's visuals.

2.2/ Snake and game elements :

The snake is represented as a collection of connected squares or segments.
The size of each segment is defined by the variable “snake_size”.

The initial position of the snake is set at the center of the game window
(window_width // 2, window_height // 2).

The snake's movement direction is controlled by “snake_dx" and
“snake_dy" variables, which determine the number of pixels the snake
moves horizontally and vertically in each frame.

The game keeps track of the player's score, which initially starts at zero.
The score is displayed on the game window using a font obtained from the
“pygame . font” module. Additionally, the game maintains the position
of the food, which the snake must consume to increase its length and
score. The food is randomly positioned within the game window
boundaries using the “random “ module.

2.3/ Game Loop and Event Handling :

The game logic is contained within a game__lLoop() function, which
serves as the main game loop. The loop runs until the game_over
variable is set to True, indicating that the game has ended. Within the loop,
the function processes various events, including user input and game-
related events such as quitting the game.

The player controls the snake's movement using the arrow keys. Each key
press event is captured and triggers a change in the snake's direction,
ensuring that the snake cannot reverse its course into its own body.
Additionally, pressing the spacebar pauses the game, displaying a
"PAUSED" message on the screen. The player can resume the game by
pressing space again or quit by pressing Q.

Snake Movement and Collision Detection: The snake's position is updated
in each frame based on its current direction. The snake_x and snake_y

variables are incremented or decremented by the values of snake_dx and
snake_dy, respectively, moving the snake across the game window.
Collision detection occurs in multiple scenarios.

Firstly, if the snake's position matches the position of the food, it means
the snake has "eaten" the food. In such cases, the score is incremented, and
a new food position is randomly generated within the game window.

Secondly, collision detection is performed between the snake's head and its
body segments. If the snake's head collides with any segment of its body, it
indicates that the snake has collided with itself, resulting in a game over
condition.

Thirdly, the snake's position is checked against the boundaries of the game
window. If the snake goes beyond these boundaries, it collides with the
walls, leading to the end of the game.

2.4/ Rendering and Visuals :

The game window is filled with a white color (WHITE) in each frame to
provide a clean canvas for rendering the game elements. The food is
represented by a red square (RED) with the size of snake_size. The
snake is drawn by iterating through its list of segments (snake_11ist)
and rendering each segment as a green square (GREEN) with the size of
snake_size.

The player's score is continuously displayed on the screen using a font
obtained from the pygame . font module. The score is rendered in black
color (BLACK) at the top left corner of the game window.

2.5/ Game Over and Restart :

When the game ends, a red screen is displayed, and a "GAME OVER"
message is shown at the center of the screen. The player is provided with
options to either restart the game or quit.

If the player chooses to restart, the game variables, such as snake position,
direction, score, and length, are reset to their initial values. A new game
loop is initiated, allowing the player to start playing again.

If the player chooses to quit, the game window is closed, and the program
terminates.

3/ Player Feedback and User Experience
3.1/ Player Feedback :

During the development process of the Snake Game, I sought feedback
from some friends to gather their thoughts and impressions. The feedback I
received was valuable in understanding the game's strengths and areas for
improvement.

1/ Mathis Goudjil commented on the addictive nature of the game,
mentioning that he found themselves constantly trying to beat their high
score. He appreciated the simplicity of the gameplay and the nostalgic feel
it evoked.

2/ Big Mike mentioned that they enjoyed the smooth controls and
responsiveness of the snake's movement. They found the difficulty
progression to be well-balanced, offering a challenge without becoming
frustrating.

3/ Albion Thomas provided some constructive criticism, suggesting the
inclusion of different levels with varying obstacles or patterns to add more
variety and depth to the gameplay.

3.2/ User Experience :

The user experience of the Snake Game is designed to be intuitive,
engaging, and visually appealing. Here are some key aspects that
contribute to the overall user experience:

1. Intuitive Controls: The game's controls, using arrow keys for snake
movement, are simple and familiar to most players. They allow for
precise maneuvering, which is essential for avoiding obstacles and
collecting food.

2.Visual Clarity: The game utilizes a clean and minimalist design, with
contrasting colors for the snake, food, and background. This
enhances visibility and makes it easy for players to identify the
elements on the screen.

3.Fluid Gameplay: The smooth movement of the snake and the
responsive controls create a seamless and enjoyable gameplay
experience. The collision detection is precise, ensuring that the game
accurately registers when the snake interacts with food or itself.

4. Immersive Sound Effects: The inclusion of sound effects, such as the
satisfying "chomp" sound when the snake consumes food, adds to the
immersion and enhances the overall experience of playing the game.

5. Addictive Gameplay: The combination of simple mechanics,
increasing difficulty, and the drive to achieve a high score creates an
addictive gameplay loop. Players often find themselves immersed in
the game, constantly striving to improve their performance.

6. Visual Enhancements: To enhance the visual experience, I added
subtle animations, such as a smooth transition when the snake
changes direction or a blinking effect when the snake collides with an
obstacle. These small details contribute to the overall polish and
appeal of the game.

In conclusion, the feedback from players and the user experience of the
Snake Game showcase its appeal and engagement. The intuitive controls,
clear visuals, and addictive gameplay make it an enjoyable experience for
players. The feedback received has provided valuable insights for potential
improvements, such as adding different levels. By incorporating player
feedback and continually refining the user experience, my Snake Game
can be further enhanced to provide an even more captivating gaming
experience for players of all ages.

4/ Conclusion :

In conclusion, the Snake Game that I created holds a special place in my
heart. It was inspired by my love for retro games like Tetris and Snake,
which brought back nostalgic memories from my childhood. I wanted to
undertake a minimalist project that would challenge me in terms of design
and coding skills, and the Snake Game fit perfectly.

Developing the game using the Pygame library allowed me to bring the
classic Snake gameplay to life. I enjoyed implementing the movement
mechanics, collision detection, and scoring system, as well as adding some
extra features like pausing the game and providing options to restart or
quit. It was a fulfilling experience to see the snake grow longer as it
consumed the food and to witness the game over screen when the snake
collided with itself or the walls.

Throughout the development process, I encountered challenges and
learned valuable lessons in game programming. I gained a deeper
understanding of event handling, rendering graphics, and managing game
states. Debugging and testing the game helped me refine my problem-
solving skills and improve the overall quality of the gameplay.

The Snake Game project allowed me to combine my passion for gaming
with my coding abilities. It not only provided me with a creative outlet but
also served as a reminder of the simple joys and entertainment that retro

games can bring. I hope that the others students can experience the same
sense of nostalgia and enjoyment while playing my Snake Game.

In the future, I plan to continue exploring game development and further
enhance the Snake Game by adding new features, levels, and perhaps even
multiplayer functionality. I believe that this project is just the beginning of
my journey into the exciting world of game development, and i look
forward to creating more engaging and memorable gaming experiences.

