
POLITECHNIKA KRAKOWSKA

PYTHON Project
Implementation of mini games

Corentin BATARD

12 juin 2023

For the attention of M. Radosław Kycia



Contents

1 General Introduction 2

2 Main Menu 2

2.1 Goal . . . . . . . . . . . . . . . . 2

2.2 Important functions . . . . . . . . 2

3 Morpion game 3

3.1 Goal . . . . . . . . . . . . . . . . 3

3.2 Important functions . . . . . . . . 3

4 Snake game 4

4.1 Goal . . . . . . . . . . . . . . . . 4

4.2 Important functions . . . . . . . . 4

1



June 13, 2023

1 General Introduction

The aim of this project is to put into practice all the knowledge we have acquired
since the beginning of the semester in the Python course. To do this, I chose to
create a programme that o�ers the user several mini-games.

The program can of course o�er a multitude of di�erent games, but for lack
of time to implement it , I've decided to limit the program to two mini-games:
morpion (tic-tac-toe) and snake.

In this report, I'm going to detail the three main code �les, that is to say
the main and the two games that I implemented myself using the Python 2023
course taught by Mr Radosªaw Kycia, and resources available on internet.

Please note that this report is only intended to help you understand the
project properly. All the codes will of course be provided in the annex.

2 Main Menu

2.1 Goal

The aim of this program is to create an interface enabling the user to choose
the mini-game they want to play from among all the games available.

The program must be able to launch the correct game chosen.

2.2 Important functions

All the function in this program are very simple

def recover_choice():

choice = input("Choose a game (1 or 2): ")

while choice != "1" and choice != "2":

choice = input("Invalid choice. Please choose 1 or 2 : ")

return choice

The function recover_choice() checks that the number entered is correct.

def main():

display_menu()

choice = recover_choice()

if choice == "1":

launch_morpion()

elif choice == "2":

launch_snake()

Here is the main function to launch the choosen game

2



3 Morpion game

3.1 Goal

The aim of this programme is to play the well-known game of tic-tac-toe. Each
player takes his turn.

The aim of the game is to be the �rst player to succeed in aligning three of
its symbols vertically, horizontally or diagonally.

For a better visual aspect I used pygame

3.2 Important functions

To keep things simple, I've represented the game grid as a table with 3 rows
and 3 columns.Each square in the table corresponds to a square in the game.

I have initialised an array of zero and I consider that the array can only have
three values:

- 0 , which means that the location is available
- 1, which means that the location has been chosen by player 1
- 2 , which means that the location has been chosen by player 2
Here is the implementation of the function that design the pattern , circle

for player 1 and cross for player 2

1 def genere_design_pattern():

2 for row in range(TABLE_ROW):

3 for col in range(TABLE_COL):

4 if Table[row][col] == 1:

5 pygame.draw.circle(screen,CIRCLE_COLOUR, (int(col * 200 +

100), int(row * 200 + 100)), CIRCLE_RAYON,

CIRCLE_WIDTH)

↪→

↪→

6 elif Table[row][col] == 2:

7 pygame.draw.line(screen, CROSS_COULOUR , (col * 200 +

SPACE, row * 200 + 200 - SPACE), (col * 200 + 200 -

SPACE, row * 200 + SPACE), CROSS_WIDTH)

↪→

↪→

8 pygame.draw.line(screen, CROSS_COULOUR , (col * 200 +

SPACE, row * 200 + SPACE), (col * 200 + 200 - SPACE,

row * 200 + 200 - SPACE), CROSS_WIDTH)

↪→

↪→

To check if a player has won, I just check if 3 squares are equal for each
possible direction

def play():

create_line()

player = 1

game_over = False

# Boucle principale du jeu

while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:

3



sys.exit()

if event.type == pygame.MOUSEBUTTONDOWN and not game_over:

mouseX = event.pos[0] # Abscissa of mouse position

mouseY = event.pos[1] # Ordinate of mouse position

clicked_row = int(mouseY // 200)

clicked_col = int(mouseX // 200)

if placement_available(clicked_row, clicked_col):

placement(clicked_row, clicked_col, player)

if victory(player) or full_table():

print(p button to restart)

game_over = True

player = 2 if player == 1 else 1

genere_design_pattern()

if event.type == pygame.KEYDOWN:

if event.key == pygame.K_p:

restart()

player = 1

game_over = False

pygame.display.update()

What's important here is to be able to retrieve the box clicked by the user,
which I do here using pygame's event module.

4 Snake game

4.1 Goal

The aim of this programme is to play the well-known game of snake .
The aim of the game is to get the snake to eat as many apples as possible

without going o� track
As a reminder, the player cannot turn around.
For a better visual aspect I used pygame

4.2 Important functions

The snake has several attributes, a body, a position and a direction.
In this game, all the snake's movements are managed by pygame's event

module, which retrieves the keys pressed by the user and the resulting if loops
on the direction.

I've also introduced the next_direction variable to block changes in opposite
directions.

4



Figure 1: change in snake position

I then added several features:
- change the di�culty
- save your score
- display the best scores
The di�culty correspond to the snake's speed of movement

# Difficulty settings

# Simple -> 15

# Normal -> 25

# Difficult -> 50

# Hard -> 100

difficulty = 25

fps_controller.tick(difficulty)

5



The function save is performed thanks to the write of �le module

# Save score

def save_score(score, login):

with open('scores.txt', 'a') as file:

file.write(login + ',' + str(score) + '\n')

And the function show_top_scores

# Show top scores

def show_top_scores():

scores = []

# Here we we read the file and retrieve the login and score for

each item of data, which are separated in the file by a comma↪→

with open('scores.txt', 'r') as file:

for line in file:

login, score = line.strip().split(',')

scores.append((login, int(score)))

# Here we sort in descending order of score

scores.sort(key=lambda x: x[1], reverse=True)

score_font =pygame.font.SysFont('times new roman', 30)

score_y = SCREEN_HEIGHT/4

game_window.fill(BLACK)

title_surface = score_font.render('Top Scores:', True, RED)

title_rect = title_surface.get_rect (center=(SCREEN_WIDTH /

2, score_y))↪→

game_window.blit(title_surface, title_rect)

score_y += 30

# Here is the loop to display the five best scores

for i in range(min(5, len(scores))):

score_text = f'{i+1}. {scores[i][0]} - {scores[i][1]}'

score_surface = score_font.render(score_text, True,

WHITE)↪→

score_rect = score_surface.get_rect(center=(SCREEN_WIDTH

/ 2, score_y))↪→

game_window.blit(score_surface, score_rect)

score_y += 30

pygame.display.flip()

6


