POLITECHNIKA KRAKOWSKA

Politechnika Krakowska

AMA im. Tadeusza Kosciuszki

PYTHON Project
Implementation of mini games

Corentin BATARD

12 juin 2023

For the attention of M. Radostaw Kycia

Contents
General Introduction

Main Menu
21 Goal
2.2 Important functions

Morpion game
3.1 Goal
3.2 Important functions

Snake game
41 Goal
4.2 Important functions

June 13, 2023

1 General Introduction

The aim of this project is to put into practice all the knowledge we have acquired
since the beginning of the semester in the Python course. To do this, I chose to
create a programme that offers the user several mini-games.

The program can of course offer a multitude of different games, but for lack
of time to implement it , I’ve decided to limit the program to two mini-games:
morpion (tic-tac-toe) and snake.

In this report, I'm going to detail the three main code files, that is to say
the main and the two games that I implemented myself using the Python 2023
course taught by Mr Radostaw Kycia, and resources available on internet.

Please note that this report is only intended to help you understand the
project properly. All the codes will of course be provided in the annex.

2 Main Menu
2.1 Goal

The aim of this program is to create an interface enabling the user to choose
the mini-game they want to play from among all the games available.
The program must be able to launch the correct game chosen.

2.2 Important functions
All the function in this program are very simple

def recover_choice():
choice = input("Choose a game (1 or 2): ")
while choice != "1" and choice != "2":
choice = input("Invalid choice. Please choose 1 or 2 : ")
return choice

The function recover choice() checks that the number entered is correct.

def main():
display_menu()
choice = recover_choice()

if choice == "1":
launch_morpion()
elif choice == "2":

launch_snake()

Here is the main function to launch the choosen game

[N

3 Morpion game

3.1 Goal

The aim of this programme is to play the well-known game of tic-tac-toe. Each
player takes his turn.

The aim of the game is to be the first player to succeed in aligning three of
its symbols vertically, horizontally or diagonally.

For a better visual aspect I used pygame

3.2 Important functions

To keep things simple, I've represented the game grid as a table with 3 rows
and 3 columns.Each square in the table corresponds to a square in the game.

I have initialised an array of zero and I consider that the array can only have
three values:

- 0, which means that the location is available

- 1, which means that the location has been chosen by player 1

- 2, which means that the location has been chosen by player 2

Here is the implementation of the function that design the pattern , circle
for player 1 and cross for player 2

def genere_design_pattern():
for row in range (TABLE_ROW) :
for col in range(TABLE_COL):
if Tablel[row] [col] == 1:
pygame .draw.circle(screen,CIRCLE_COLOUR, (int(col * 200 +
— 100), int(row * 200 + 100)), CIRCLE_RAYON,
— CIRCLE_WIDTH)
elif Table[row] [col] == 2:
pygame.draw.line(screen, CROSS_COULOUR , (col * 200 +
— SPACE, row * 200 + 200 - SPACE), (col * 200 + 200 -
— SPACE, row * 200 + SPACE), CROSS_WIDTH)
pygame.draw.line(screen, CROSS_COULOUR , (col * 200 +
— SPACE, row * 200 + SPACE), (col * 200 + 200 - SPACE,
— row * 200 + 200 - SPACE), CROSS_WIDTH)

To check if a player has won, I just check if 3 squares are equal for each
possible direction

def play(Q):
create_line()
player = 1

game_over = False
Boucle principale du jeu
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:

sys.exit()
if event.type == pygame.MOUSEBUTTONDOWN and not game_over:
mouseX = event.pos[0] # Abscissa of mouse position
mouseY = event.pos[1] # Ordinate of mouse position
clicked_row = int(mouseY // 200)
clicked_col = int(mouseX // 200)
if placement_available(clicked_row, clicked_col):
placement(clicked_row, clicked_col, player)
if victory(player) or full_table():
print(p button to restart)
game_over = True
player = 2 if player == 1 else 1
genere_design_pattern()
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_p:
restart()
player = 1
game_over = False
pygame.display.update()

What’s important here is to be able to retrieve the box clicked by the user,
which I do here using pygame’s event module.

4 Snake game

4.1 Goal

The aim of this programme is to play the well-known game of snake .

The aim of the game is to get the snake to eat as many apples as possible
without going off track

As a reminder, the player cannot turn around.

For a better visual aspect I used pygame

4.2 Important functions

The snake has several attributes, a body, a position and a direction.

In this game, all the snake’s movements are managed by pygame’s event
module, which retrieves the keys pressed by the user and the resulting if loops
on the direction.

I’ve also introduced the next direction variable to block changes in opposite
directions.

3} # Main logic

) while True:

) for event in pygame.event.get():

L if event.type == pygame.QUIT:

' pygame.quit()

3 sys.exit()

} # Whenever a key is pressed down
elif event.type == pygame.KEYDOWN:

if event.key == pygame.K_UP :

’
]
r
3 change_to = 'UP’
) if event.key == pygame.K_DOWN :
) change_to = 'DOWN'
L if event.key == pygame.K_LEFT :
' change_to = 'LEFT'
H if event.key == pygame.K_RIGHT :
} change_to = 'RICHT'
Esc -> Create event to quit the game

if event.key == pygame.K_ESCAPE:
pygame.event.post(pygame.event.Event(pygame.QUIT))

Making sure the snake cannot move in the opposite direction instantaneously

1w e ue W e W

if change_to == 'UP' and direction != 'DOWN':
direction = 'UP’

if change_to == 'DOWN' and direction != 'UP':
direction = 'DOLN'

if change_to == 'LEFT' and direction != 'RIGHT':
direction = 'LEFT'

if change_to == 'RICHT' and direction != 'LEFT':
direction = 'RIGHT'

Moving the snake

if direction == 'UP':
snake_pos[1] -= 10
if direction == 'DOWN':

snake_pos[1] += 10

o 1w e ue W W e

if direction == '"LEFT':
3 snake_pos[8] -= 10
5 if direction == '"RICHT':
r

snake_pos[0] += 10
Figure 1: change in snake position

I then added several features:

- change the difficulty

- save your score

- display the best scores

The difficulty correspond to the snake’s speed of movement

Difficulty settings

Simple -> 15
Normal -> 25
Difficult -> 50
Hard -> 100

difficulty = 25
fps_controller.tick(difficulty)

The function save is performed thanks to the write of file module

Save score
def save_score(score, login):
with open('scores.txt', 'a') as file:
file.write(login + ',' + str(score) + '\n')

And the function show top_scores

Show top scores
def show_top_scores():
scores = []
Here we we read the file and retrieve the login and score for
— each item of data, which are separated in the file by a comma
with open('scores.txt', 'r') as file:
for line in file:
login, score = line.strip().split(',')
scores.append((login, int(score)))
Here we sort in descending order of score
scores.sort(key=lambda x: x[1], reverse=True)
score_font =pygame.font.SysFont('times new roman', 30)
score_y = SCREEN_HEIGHT/4
game_window.fil1 (BLACK)
title_surface = score_font.render('Top Scores:', True, RED)
title_rect = title_surface.get_rect (center=(SCREEN_WIDTH /
— 2, score_y))
game_window.blit(title_surface, title_rect)
score_y += 30
Here 1s the loop to display the five best scores
for i in range(min(5, len(scores))):
score_text = f'{i+1}. {scores[i][0]} - {scores[i][1]}'
score_surface = score_font.render(score_text, True,
— WHITE)
score_rect = score_surface.get_rect(center=(SCREEN_WIDTH
- / 2, score_y))
game_window.blit (score_surface, score_rect)
score_y += 30
pygame.display.flip()

