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Motivation: compare the top-valued error estimation techniques
applied to nonlinear elasticity.

o Finite Element Method for nearly incompressible materials.

@ The idea to estimate the error due to Riter and Stein.

@ Residual implicit error estimate due to Bank/Weiser,

e 6 o

Demkowicz/Oden /Strouboulis.

Residual implicit error estimate with self-equlibration of residuals.
Equidistribution of fluxes:

® | adeveze and Maunder.
® Ainsworth and Oden.

Numerical examples.

Generalization for constrained meshes.
Numerical examples for irregular meshes.
Summary and conclusions.
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Formulation of finite elasticity bvp

Finite elasticity:

@ x(X,t) - Lagrangian description

_ oz ; :
@ F= oX - deformation gradient

@ C = F'F - right Cauchy—Green tensor
@ J =det(C)'/? = det(F) > 0 - volume ratio

@ Multiplicative decomposition of deformation gradient (Flory 1961):
F=J'3F C=J73C
@ Invariants:
L =tr(C), L= 3[(tr(C)?—tr(C?)], I3=detC.

@ Modified invariants:

L =tr(C), I=1[tr(C)2—tr(C?), I;=detC =
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FEM for nearly incompressible elastic materials

@ Strain energy:
_ c -
v="2-12+ 8 ~3)+ 5(l—3)

~——
Yool Wiso

If k> p, c nearly incompressible. Pure displacement approximation may
result in stability problems, oscilations, locking etc.

~| =
I\

@ The remedy — a 2-field formulation:
u - displacements, p - the Lagrange multiplier.

@ The constitutive relations:
S =—pJC~' 4+ J2/3Dev[S],

p= _\I/:Jol(J)’

P a“Iliso

S = —
oC '’

p can be interpreted as pressure,

Dev[e] := (o) — 1[(e) : C]C ™! - deviatoric operator.
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Mixed formulation

@ Boundary-value problem (with P = F'S): find {u,p} such that
—DivP = b in Q
u = u on I'p,
PN = t on Iy.

@ The weak formulation: find w € w + V, p € Q such that

1 . R
/ f(FTVU—i—VTvF):Sde/bde—i—/ t-vdS, Vvev,
92 Q 1—‘N

Q(p+\1/;01(J))qu:0, VqeQ.

@ Functional spaces: V ={ve H}(Q): v=0 on I'p},
Q= L*(Q).
@ Finite element spaces, hexahedron (Simo-Pister-Taylor 1985):
Vi ={v e H'(Q): vjx € Q"(K)}, Q" =span{¢"’C": i,j.k < p},
Qn=1{qe€ L*): qK € PPYK)}, PP~l=span{¢ini¢k: i+j+k<p—1}.
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Mixed formulation — details

@ Formulation with the first Piola-Kirchhoff stress tensor:

OPis ; dV = /blvz dv
00Xy J
0 ov; N
- 1J Vs dVv = bi i av
/Q[ax (Piyvs) = ax] /Q v

0Xy

t-v
/P:VvdV:/B~vdV+/ t-vdS
Q Q 'y

@ Formulation with the second Piola-Kirchhoff stress tensor:

Ov; .
*/PiJNJUi ds+/ P i dV:/ biv; dV
F\ﬁ/—’ Q Q

Smi

—

v, 00Xk Ox;  Ov; 1 r T
P; dv = m dVv = —(F*V Vi vF): SdV
/Q Tox, / Jaxm 3XK 0X /Q 2( vt ViR

SJK FIK (Vv),;s

/%(FTVU+VTUF):SdV=/E-'udV+/ f.vdS, VoeV
Q Q

T'n

Waldemar Rachowicz Cracow University of  Self-equilibrated residual based error...



The idea of error estimation for nonlinear elasticity:

Ruter, Stein, CMAME 2000

@ Riiter, Stein 2000: Helmholtz decomposition of 1st Piola-Kirchhoff tensor:
P—P,=Vi+Vx¢, and (Vx¢d)N=0onT.

@ Representation of the equilibrium residual:

R(’U)Z/QB'U-F/FNi"U—/QPh!V’UE/Q(P—P}L)ZV’UZ(’l/),’Uh

fQ P:Vo

@ Findvy: (¢,v); =R(v), YVve H(Q) — bvp for error function 1) .

@ |9p|; is estimated with some error estimation technique:
Y (Yr,v)1k = Rk (v) Yo, >k Bk =R
[$h < (S xli )

@ The total error:

lu —unly +[lp = pally < C

1/2
[l + (Z 1%, +ph||§,K> ]

K
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Weak formulation for Laplace equation

We show the error estimation techniques for a scalar Laplace equation as
estimates for subsequent components of the flux decouple.

The weak formulation of Laplace equation:

strong: variational:

Find ueV +4a:

~V-aVu = f inQ B(u,v) = L(v) Yv €V

uw = @ onlp = B(u,v):/aVu~Vvdx
Ou g on I’ .
a— =
on Y N

L(v) = d guv d
(v) /va aer/FNgv S
V={veH (Q): v=0on I'p}.
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Residual error estimate: Bank, Weiser, Math. Comp. 1985,

Demkowicz, Oden, Strouboulis, CMAME 1984

@ We define, in an enriched space of shape functions V}, 41 (K), the kernel of
the interpolation operator IIj,:

Mg = {’U S Vh,p+1(K) : th’l} = 0} (01)

@ Next, we formulate the local boundary-value problems in the kernel M
find ¢ () € Mk such that:

B(¢r,v) = rx(v), Yo € Mk.

The residual on the right-hand side is defined as:

flux jump
. Ouy Ouyp,
rg(v) = [(f+V-aVup) v de+ [(G—a——)v dS+ 1/2 |la—=—|| -v dS.
K ornryOn OK\ON on

@ The error estimate reads:

2 2
lun —ully <O ol w

K

where C' is a parameter growing moderately with p.
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Error estimation with self-equlibration of residuals,

Ainsworth, Oden, Numer. Math. 1993
@ We represent the global residual functional as the following sum of element
constributions:

T(uhvv) = B(Uh,’l}) - L(U) = Z(BK(U}H ) - LK(U)) =
ZK (BK<uh7 ) LK( ZT‘K s with Z)\K(U) =
K

ri (v)

@ In addition, we construct the functonals Ax in such a way that:
rik (1) =0, for all elements K — self-equilibration.

@ The last condition allows one to solve the local Neumann problems of the
form: find ¢x € V(K) = H'(K) such that:

Bg(dr,v) =rr(v), Yv € V(K).
@ This results in the following estimate:
2 2
un —ullp < Xk okl k-

Note that there is no auxiliary constant scaling the estimate.
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Error estimation with self-equlibration of residuals

@ Find ¢ € H'(K) such that
Br(¢x,v) = rg(v), Yv € HY(K), (0.2)
@ The estimate:

|T(uh7 U)' =

ZTK(U)
K
1/2 1/2
(Z ||¢K||§3,K> <Z v|K||%,K>
K K

llvll g

= ZBK(¢K7U|K) < ZBK(¢K7¢K)1/QBK(U|K7'U|K)1/2 <
K K

@ The energy norm of the error = the dual norm of the residual:

| 1/2

r\Up,v

[un = ull g = lIrll, = sup ———= ZII¢KIIEK :
vev v H
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Self-equilibration due to Ladeveze and Maunder

CMAME 1996

@ We define the average flux between elements K and L over their common

face: _ 1
tK = 5((aVuh)K + (aVuh)L) ‘Ng.

@ Next, we wish to find a function 6k (s) to satisfy the following conditions
for all 8 vertices of element (Ladeveze called it: prolongation conditions):

A (PK)

BK(Uh,T/J?()—LK(Q/)?()—/ t}(l/)% dS+/ Ok dS =0, n=1,...,8.
0K 0K

Gk
Here G- is a known part of the element residual, 6 (s) is to be found.

@ We postulate that 0k (s) is a linear combination of 4 bilinear functions on
each face f of K: 4
Okf(s) = Z% ’ w?{\f(s)~
n=1

where 0 are the coefficients to be found.
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Typical situation: the rectangular mesh

Figure: Typical situation: 8 hexes surrounding one vertex and the
corresponding 12 walls adjacent to this vertex
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Self-equilibration due to Ladeveze and Maunder

@ The prologation conditions read:
/ Ok (s) Y (s)dS=G%, n=1,...,8.
oK

In this way we reduced the problem of finding 6k (s) to obtain for each
element K, 4 x 6 parameters 0, such that functions Ok (s) are identical
but opposite for the neigboring elements.

@ Solution of the above problem can be obtained as follows:

For a fixed vertex n of element K, let the unknown contributions to the
integral on the left-hand side be denoted g?(’f:

Ok dS= > gplt, where gif = / O} dS.
f

oK fesupp(yy)

@ With this notation the prologation condition takes the form:

Z g?(’f: %, n=1,...,8.
fesupp(y™)
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Self-equilibration due to Ladeveze and Maunder

@ We assume that vertex n belongs to N neighboring elements K
(N = 8 in the example).

@ Each element has 3 faces adjacent to vertex n, and each face is common to
2 elements.

@ This means we have 3/2N independent parameters d; corresponding to
unknown coefficients 6 (we have 3/2 -8 = 12 in the example).

@ Let's denote by (K, f) appropriate indices of d;, and by sgn(K, f) = +1

the corresponding signs connecting d; and g%’f:

g’ = di.p) - sen(K, f), VK € supp(y").
@ With this notation we state the prolongation conditions as follows:

Z di(k,r) - sgn(¥, f) = G%, VK € supp(9")
fesupp(ypm)NoK

or in the matrix form: Ad =G.

The above system of N equations with 3/2N unknows is underdetermined.
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Self-equilibration due to Ladeveze and Maunder

@ The explicit form is (for an example rectangular mesh): rody
+1 +1 +1 d2 G1
-1 +1 +1 . G
-1 +1 +1 . .
-1 -1 +1 7
+1 -1 -
-1 +1 +1 -1
-1 41 -1 .
-1 -1 -1 . G
L di2

@ We can solve it by considering the minimization of function d” Md, with M being

symmetric positive definite

1d"Md
Ad

min,

G?

@ Having found d; for all faces attached to the corners n, we can find parameters 9,’;:

4
gy(f=/f<29m;f>wg|fds, n=1,... 4 -
m=1
N —

Ok|y

4
gl =D nmntl,
i=1

where: fmn = ff w;?lf w;’(‘f dS, is the mass-like matrix.

Self-equilibrated residual based error...



Self-equilibration due to Ainsworth/Oden, Numer. Math. 1993

In this method we consider a similar condition as in Ladeveze:

_ ou
Bl o) = ) = [ tevras— [ un) o) ||| as =0,
9K\0Q K\ OQ on
Gk
where functions g, (s), are to be found between element K and L, with px, = —prK.

Functions px 1 (s) are found as follows. First we define the quantity:

n — n 8h
pKL._/FKL’Lp (5)[ on

11 n .
Next, we solve for coefficients u7

] dS, “jump of the flux.”

ZH?{LP?{L =Gk = Z Axr =Gk = QgL Mk =AkL/PkL
L T~ L ST~
HEKL Like in Ladeveze!

Finally, the functions w1 (s) are expressed by the above coefficients u% ; as follows:
pEL(S) = Z Y (S)hKL
It can be verified that px 1 (s) satisfy the prolongation conditions with 1 replacing ¢™:

o
G?(—/ 1'},LKL(S)|:Q v
OK\OQ on

Zh ] dS =0, i.e. equlibrium of rx.
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Examples: errors on unconstrainded meshes - tube

‘ L LT N

| gmnnnnyy v
1

e)
Figure: Tube pumped by internal pressure. Solution: a) uz, b) u,, c) oy.
Errors: d) Ainsworth/Oden, e) Ladeveze/Maunder, f) Demkowicz et al.
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Errors on unconstrained meshes - “tyre tread”

Figure: “Tyre tread.” a) solution u, (on deformed configuration).
Errors: b) Ainsworth/Oden, c) Ladeveze/Maunder, d) Demkowicz et al.
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Errors on unconstrained meshes - irregular tube

Figure: Irregular tube.
Errors: a) Ainsworth/Oden, b) Ladeveze/Maunder, c) Demkowicz et al.
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Generalization for constrained meshes

(o)

0 0

0

o 172 /4
1/ f
1.0 12 0
2 14
0 0
1/4
P; =X Rjj0;

Figure: Illustration of a constrained shape function ®; associated with

a central vertex node.
Coefficients R;; expressing the constrained shape function ®; by ordinary

shape functions ¢; are found automatically for every element
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Constrained walls in Ladeveze/Maunder method

7 vertices 4 vertices

Figure: Constrained walls where value of approximation depends on:
a) values in 7 vertices - excluded in the algorithm,

b) values in 4 vertices - included in the algorithm

Ainsworth/Oden method —

just replace ordinary shape functions by constrained shape functions:

¢71' — @Z :Zj Rij¢j~
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Algorithm

for vert=1,8
find elements attached to ivert, list(1:nrel)

for i=1,nrel
for wall=1,6
collect and classify faces attached to ivert
endfor wall
endfor i

for i=1,nrel
find augmented residual of element G
for wall=1,6
build equation for face A; ;
endfor wall
endfor i

solve system of eq. for d; (or uxr)
endfor vert

Develop equilibrated residual r i
Solve Neumann problem for ¢

Evaluate error e
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Errors on constrained meshes - “tyre tread”

a7

c)
Figure: “Tyre tread.” a) solution w,.
Errors: b) Ainsworth/Oden, c) Ladeveze/Maunder, d) Demkowicz et al.
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Errors on constrained meshes - irregular tube

Figure: Irregular tube.
Errors: a) Ainsworth/Oden, b) Ladeveze/Maunder, c) Demkowicz et al.
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Correlation of the estimates

Problem mesh Ainsworth/Oden Ainsworth/Oden Demkowicz et al.
Ladeveze/Maunder | Demkowicz et al. | Ladeveze/Maunder
[ tube strainght [ hO | 0.99 [ 0.95 [ 0.94 ]

“tire tread” hO 0.99 0.89 0.89

h1l 0.96 0.75 0.83

h2 0.93 0.57 0.72

tube irregular hO 0.96 0.89 0.88
hl 0.87 0.64 0.82

h2 0.93 0.70 0.77

h3 0.91 0.67 0.74

Table: Correlation between the errors
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Summary and conclusions

@ We presented a study of applying the top-valued error estimation
techniques to FE solutions of nonlinear elasticity:

i) the implicit method of Demkowicz/Oden/Strouboulis (or Bank/Weiser),
ii) self-equilibration method of Ainsworth/Oden (in two versions).

@ The self-equilibration method has a unique feature of lacking of any
auxiliary constant scaling the estimate.

@ We described the algorithms working for the 1-irregular meshes in 3D.

@ We observed a good correlation of the errors computed with the considered
methods on a number of representative meshes, both rectagular and curvilinear.

This correlation is especially excellent for regular meshes.
@ The last fact indicates that, even if one relies on solving problems on dense

uniform meshes, using large computational resources, it is worth to estimate
the error to prove the reliability of the simulation.

@ Of course, the error estimation techniques can serve for the adaptive
methods, in case when large computational resaurces are not available.

Waldemar Rachowicz Cracow University of  Self-equilibrated residual based error...



